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Abstract

In this paper we begin the development of a relative version ofT-duality in generalized complex
geometry which we propose as a manifestation of mirror symmetry. LetM be ann-dimensional smooth
real manifold,V a rankn real vector bundle onM, and∇ a flat connection onV. We define the notion
of a∇-semi-flat generalized almost complex structure on the total space ofV. We show that there is an
explicit bijective correspondence between∇-semi-flat generalized almost complex structures on the
total space ofV and∇∨-semi-flat generalized almost complex structures on the total space ofV∨. We
show that semi-flat generalized complex structures give rise to a pair of transverse Dirac structures on
the base manifold. We also study the ways in which our results generalize some aspects ofT-duality
such as the Buscher rules. We show explicitly how spinors are transformed and discuss the induces
correspondence on branes under certain conditions.
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1. Introduction

Mirror symmetry is often thought of as relating the very different worlds of complex
geometry and symplectic geometry. It was recently shown by Hitchin[14] that symplec-
tic and complex structures on a manifold have a simple common generalization called a
generalized complex structure. This is a complexified version of Dirac geometry[9] along
with an extra non-degeneracy condition. It is expected that mirror symmetry should give
rise to an involution on sectors of the moduli space of all generalized complex manifolds
of a fixed dimension. One of the most concrete descriptions of the mirror correspondence
is the Strominger–Yau–Zaslow picture[24] in which mirror symmetry is interpreted as a
relativeT-duality along the fibers of a special Lagrangian torus fibration. This is sometimes
referred to as “T-duality in half the directions”. In our previous work[2], we investigated the
linear algebraic aspects ofT-duality for generalized complex structures. See also[27] for
the analogous story in Dirac geometry. In this paper, we go one step further and construct an
explicit mirror involution on certain moduli of generalized complex manifolds. Similarly
to the case of Calabi–Yau manifolds the definition of our mirror involution depends on
additional data. In our set up, we will consider generalized complex manifolds equipped
with a compatible torus fibration. This involution, when applied to such a manifold, gives
another with the same special properties, which we propose to identify as its mirror partner.
In the special cases of a complex or symplectic structure on a semi-flat Calabi–Yau manifold
our construction reproduces the standardT-duality of [20,22,23]. In addition we get new
examples of mirror symmetric generalized complex manifolds, e.g. the ones coming from
B-field transforms of complex or symplectic structures.

If V is a real vector space then[14] a generalized complex structure onV is a complex
subspaceE ⊆ (V ⊕ V∨)⊗ C that satisfiesE ∩ Ē = (0) and is maximally isotropic with
respect to the canonical quadratic form on (V ⊕ V∨)⊗ C. Let

f : V ⊕ V∨ → W ⊕W∨

be a linear isomorphism which is compatible with the canonical quadratic forms. Thenf
induces a bijection between generalized complex structures onV and generalized complex
structures onW. Transformations of this type can be viewed as linear analogues of the
T-duality transformations investigated in the physics literature (see[17,26]and references
therein). Mathematically they were studied in[27] for Dirac structures and in[2] for general-
ized complex structures. In this paper, the relevant case is whereV = A⊕ B,W = A∨ ⊕ B,
andf : A⊕ B⊕ A∨ ⊕ B∨ → A∨ ⊕ B⊕ A⊕ B∨ is the obvious shuffle map.

A generalized complex structure on a manifoldX is a maximally isotropic sub-bundle of
(TX ⊕ T∨X )⊗ C that satisfiesE ∩ Ē = (0) and thatE is closed under the Courant Bracket.
In this paper, we shall preform a relative version of thisT-duality for pairs of manifolds
that are fibered over the same base and where the two fibers over each point are “dual”
to each other. In other words we will find a way to apply the linear ideas above to the
torus fibered approach. On each fiber, this process will agree with the linear map described
above.

Throughout the paper as well as in Part II we comment on how our results relate to some
of the well established results and conjectures of mirror symmetry[19,20,22–24]and also
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what they say in regards to the new developments in generalized Kähler geometry[12]
and the relationships between generalized complex geometry and string theory[12,17,26]
which have appeared recently. As mentioned in[17] we may interpret these dualities as be-
ing a generalization of the duality between theA-model andB-model in topological string
theory. In the generalized K̈ahler case, they can be interpreted as dualities of supersym-
metric nonlinear sigma models[11]. To this end, in Section5 we sketch a relationship
between branes in the sense of[12,17] in a semi-flat generalized complex structure and
branes in its mirror structure. For some simple examples of branes, we give the relationship
directly. We also show in Section4 that the Buscher rules[5,6] for the transformation of
metric andB-field hold between the mirror pairs of generalized Kähler manifolds that we
consider.

It will be very interesting to extend the discussion in Section5 to a full-fledged Fourier–
Mukai transform on generalized complex manifolds. Unfortunately, the in-depth study of
branes in generalized complex geometry is obstructed by the complexity of the behavior of
sub-manifolds with regards to a generalized complex structure. Several subtle issues of this
nature were analyzed in our previous paper[2]. In particular we investigated in detail the
theory of sub and quotient generalized complex structures, described a zoo of sub-manifolds
of generalized complex manifolds and studied the relations among those. We also gave a
classification of linear generalized complex structures and constructed a category of linear
generalized complex structures which is well adapted to the question of quantization. In
a future work we plan to incorporate the structure of a torus bundle in this analysis and
construct a complete Fourier transform for branes.

For the benefit of the reader who may not be familiar with generalized complex geom-
etry, we have included Section2 which introduces the linear algebra and some basics on
generalized complex manifolds. More details on these basics may be found in[2,12,14–16].

2. Notation, conventions, and basic definitions

Overall, we will retain the notation and conventions from our previous paper[2], and so
we only recall the most important facts for this paper as well as some changes. The dual
of a vector spaceV will be denoted asV∨. We will often use the annihilator of a subspace
W ⊆ V , which we will denote

Ann(W) = {f ∈ V∨|f |W ≡ 0} ⊆ V∨.

We will need the pairing〈•, •〉 onV ⊕ V∨, given by (following[15])

〈v+ f, w+ g〉 = −1
2(f (w)+ g(v)) for all v, w ∈ V, f, g ∈ V∨.

Givenv ∈ V andf ∈ V∨, we will write either〈f |v〉 or 〈v|f 〉 for f (v). This pairing corre-
sponds to the quadratic formQ(v+ f ) = −f (v).

We will tacitly identify elementsB ∈ ∧2
V∨ with linear mapsV → V∨. When thought

of in this way, we have that the map is skew-symmetric:B = −B∨.
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We will often consider linear maps ofV ⊕W → V ′ ⊕W ′. Sometimes, these be written
as matrices

T =
(

T1 T2

T3 T4

)
,

with the understanding thatT1 : V → W ′, T2 : W → V ′, T3 : V → W ′ andT4 : W → W ′
are linear maps. All of these conventions will be extended to vector bundles and their
sections in the obvious way.

If M is a manifold, we letC∞M denote the sheaf ofreal-valued C∞ functions onM. We
will use the same notation for a vector bundle and for its sheaf of sections. The tangent
and cotangent bundles ofM will be denoted byTM andT∨M . For a vector bundleV over
a manifoldM and a smooth mapf : N → M, we denote the pullback bundle byf ∗V . A
section off ∗V which is a pullback of a sectione of V will be denotedf ∗(e). If f is an
isomorphism onto its image or the projection map of a fiber bundle, the sections of this
form give the sub-sheaff−1V ⊆ f ∗V . We will sometimes replace

∧•
T∨M by �•M .

Now we will give some basic facts on generalized complex geometry that we will need
in the paper. For more information the reader may see[2,12,14].

2.1. Generalized almost complex manifolds

Let M be a real manifold. Ageneralized almost complex structure on a real vector bundle
V → M has been defined[12,14,15]in the following equivalent ways:

• A sub-bundleE ⊆ VC⊕ V∨C which is maximally isotropic with respect to the standard
pairing〈•, •〉 and satisfiesE ∩ Ē = 0;

• An automorphismJ of V ⊕ V∨ which is orthogonal with respect to〈•, •〉 and satisfies
J2 = −1.

Example 2.1. Let V be a real vector bundle.

(a) LetJ be an almost complex structure onV. Then

J =
(

J 0

0 −J∨

)

is a generalized almost complex structure onV. If J is a generalized complex structure
on V that can be written in this form, we say thatJ is of complex type.

(b) Letω be an almost symplectic form onV (i.e., a non-degenerate sectionω of
∧2

V∨).
Then

J =
(

0 −ω−1

ω 0

)
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is a generalized complex structure onV. We say that such aJ is of symplectic
type.

There is also a way of describing generalized almost complex structures onV in terms of
line sub-bundles of

∧
V∨ ⊗ C or spinors. This interpretation is very convenient for some

purposes.

Definition 2.2 (Gualtieri [12] and Hitchin [15]). Let J be a generalized almost complex
structure on a vector bundleV overM. Define thecanonical bundle to be the complex line
bundleL ⊆ ∧• V∨ ⊗ C consist of the sectionsφ satisfyingιvφ + α ∧ φ for all sections
v+ α of the+i eigenbundleE corresponding to the generalized almost complex structure
on V. Sections ofL will be calledrepresentative spinors.

For the case of an almost symplectic manifold with two-formω, this line bundle is gen-
erated by exp(−iω). For an almost complex manifold, one gets the usual canonical bundle.
Spinor bundles can also be understood intrinsically in terms of the sheaves of modules over
appropriate sheaf of Clifford algebras. The sections will satisfy certain restrictions over
each fiber. They are known as pure spinors[8,12,15]. We have listed some of their features
and examined their restriction to sub-manifolds in[2].

Definition 2.3 (Hitchin [15]). In the special case thatV = TM has a generalized almost
complex structure, we callM a generalized almost complex manifold.

In this case the spinor sections are differential forms. Such a manifold is always even
dimensional as a real manifold. This can be shown by constructing two almost complex
structures onM out of the generalized almost complex structure[15]. This also follows from
the classification of generalized complex structures on a vector space which was done in
our previous paper[2]. For the case of manifolds, a local structure theorem for generalized
complex manifolds has been proven by Gualtieri[12].

Consider a real vector bundleV and an automorphismJ of V ⊕ V∨, written in matrix
form as

J =
(
J1 J2

J3 J4

)
.

Let us record, for future use, the restrictions on theJi coming from the conditions thatJ
preserves the pairing〈•, •〉 and satisfiesJ2 = −1. They are:

J2
1+ J2J3 = −1, (2.1)

J1J2+ J2J4 = 0, (2.2)

J3J1+ J4J3 = 0, (2.3)

J2
4+ J3J2 = −1, (2.4)

J4 = −J∨1 , (2.5)
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J∨2 = −J2, (2.6)

J∨3 = −J3. (2.7)

2.2. B- and β-field transforms

Consider a real vector bundleV and a global sectionB of
∧2

V∨ [12–15]. Consider the
transformation ofV ⊕ V∨

exp(B) :=
(

1 0

B 1

)
.

It is easy to see that exp(B) is an orthogonal automorphism ofV ⊕ V∨. Thus exp(B) · E is
a generalized almost complex structure onV for any generalized almost complex structure
E ⊆ (V ⊕ V∨)⊗ C on V. We will call exp(B) · E the B-field transform of E defined by
B. We should note here that these type of transformations are sometimes called gauge-
transformations and were introduced with that name into real Dirac geometry[9] in [25].
For an overview of these transformations in the Dirac geometry context, see[3]. Similarly,
if β ∈ ∧2

V , then

exp(β) :=
(

1 β

0 1

)

then exp(β) · E will be called theβ-field transform of E defined by β. One can also write
these transformations in terms of the orthogonal automorphismsJ of V ⊕ V∨. In this case,
the actions ofB andβ are given byJ �→ exp(B)J exp(−B) andJ �→ exp(β)J exp(−β),
respectively. We can also describeB-field transforms in terms of local spinor representatives:
if a generalized almost complex structure on a real vector bundleV is defined by a pure
spinorφ ∈ ∧• V∨C , andB ∈ ∧2

V∨ then theB-field transform of this structure corresponds
to the pure spinor exp(−B) ∧ φ [14,15]. The β-field transform corresponds to the pure
spinorιexp(β)φ [12,15].

2.3. Generalized almost Kähler manifolds

We will need the notion[12,15]of a generalized almost K̈ahler structure.

Definition 2.4 (Gualtieri [12]). A generalized almost K̈ahler structure on a manifoldM is
specified by one of the equivalent sets of data.

(1) A pair (J,J′) of commuting generalized almost complex structures whose product,
G = −JJ′ is positive definite with respect to the standard quadratic form〈•, •〉 on
TM ⊕ T∨M .

(2) A quadruple (g, b, J+, J−) consisting of a Riemannian metricg, two-form b, and
two almost complex structuresJ+ andJ− such that the isomorphismsω+ = gJ+ :
TM → T∨M andω− = gJ− : TM → T∨M are anti-symmetric and hence correspond to
non-degenerate two-forms.
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The two sets of data are related explicitly as follows. The (+1) eigenbundle ofG is the
graph ofg+ b : TM → T∨M . Denote this vector bundle byC+, and the (−1) eigenbundle
(which is the graph ofb− g) by C−. Then

J± = πTM ◦ J ◦ (πTM |C± )−1.

Conversely, given (g, b, J+, J−), one defines

J = 1

2

(
1 0

b 1

)(
J+ + J− −(ω−1

+ − ω−1
− )

ω+ − ω− −(J∨+ + J∨−)

)(
1 0

−b 1

)

and

J ′ = 1

2

(
1 0

b 1

)(
J+ − J− −(ω−1

+ + ω−1
− )

ω+ + ω− −(J∨+ − J∨−)

)(
1 0

−b 1

)
.

Using this same notation we have that

G =
(
−g−1b g−1

g− bg−1b bg−1

)
. (2.8)

Example 2.5 (Gualtieri [12]). Notice that this definition naturally generalizes the linear
algebraic data of an K̈ahler manifold. We will refer to this as the ordinary Kähler case. There
is an important family of examples which include the ordinary Kähler as a special case.
They come from transforming both the complex and symplectic structures which occur in
the ordinary K̈ahler case by theB-field B.

J =
(

J 0

BJ + J∨B −J∨

)
(2.9)

and

J ′ =
(

ω−1B −ω−1

ω + Bω−1B −Bω−1

)
, (2.10)

whereωJ = −J∨ω. The ordinary K̈ahler case of course comes about from settingB to
zero.

3. T-duality

Our main goal is to extend the usualT-duality transformation of geometric structures
on families of tori in a way that will allow us to incorporate generalized (almost) complex
structures.
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3.1. T-duality in all directions

In its simplest form,T-duality exchanges geometric data on a torusT ∼= (S1)×n with
geometric data on the dual torusT∨. For instance if the torusT is a complex manifold,
then the dual torus is also naturally a complex manifold. This immediately generalizes to
translation invariant (hence integrable) generalized complex structures onT .

Indeed, choose a realization ofT as a quotientT = V/� of a realn-dimensional vector
spaceV by a sub-latticeZn ∼= � ⊆ V . Then specifying a translation invariant generalized
complex structure onT is equivalent to specifying a constant generalized complex structure
J ∈ GL(V ⊕ V∨) on the vector spaceV. Now the dual torusT∨ has a natural realization
as the quotientT∨ = V∨/Hom(�,Z). Thus, in order to describe theT-dual generalized
complex structure onT∨ it suffices to produce a constant generalized complex structure
onV∨. This can be done in a simple way: Letτ : V ⊕ V∨ → V∨ ⊕ V be the transposition
of the two summands. Using the natural identification ofV∨∨ with V, we can also viewτ
as an isomorphism betweenV ⊕ V∨ andV∨ ⊕ V∨∨. We will continue to denote byτ the
induced isomorphismVC ⊕ V∨

C
→ V∨

C
⊕ V∨∨

C
∼= V∨

C
⊕ VC. With this notation one has the

following proposition.

Proposition 3.1 (Ben-Bassat and Boyarchenko[2]). The isomorphism τ induces a bijection
between generalized complex structures on V and generalized complex structures on V∨.
If E corresponds to J ∈ AutR(V ⊕ V∨), then τ(E) corresponds to τ ◦ J ◦ τ−1.

Remark 3.2. Below, we will see that the transformation of the spinor representatives is a
Fourier–Mukai type of transformation. The precise form of this transformation is given in
Eq.(6.1). Notice that this proposition applies equally to generalized complex structures on
the vector spaceV and to constant generalized complex structures (which are automatically
integrable) onV thought of as a manifold. These in turn give generalized complex structures
on tori which are quotients of the vector space.

We also have the following remark from[2].

Remark 3.3. Suppose thatE is a generalized complex structure on a real vector spaceV
andE′ is theB-field transform ofE defined byB ∈ ∧2

V∨. Then, obviously,τ(E′) is the
β-field transform ofτ(E), defined by the sameB ∈ ∧2

V∨ (but viewed now as a bi-vector
onV∨). Thus, the operationτ interchangesB- andβ-field transforms.

The relationship from this last remark was exploited in[17] to produce an interesting
conjectural relationship to non-commutative geometry.

3.2. More general T-duality

It has been known for some time that the previous example ofT-duality generalizes im-
mediately to a whole family ofT-duality transformations. This can be found for example[18]
and the references therein. More recently Tang and Weinstein[27] applied this observation
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to Dirac structures to investigate the group of Morita equivalences of real non-commutative
tori.

By analogy with the Tang–Weinstein construction we note that ifV =⊕m
i=1 Vi and

W =⊕m
i=1 Wi, where eachWi equals eitherVi or Vi

∨, then the obvious isomorphismτ
from V ⊕ V∨ to W ⊕W∨ intertwines the canonical quadratic forms and hence it similarly
gives a bijection between generalized complex structures onV with those onW. Notice
that these transformations are all real and so there is no problem with the transversality
condition. In general, one could also consider as duality transformations, isometriesτ, from
VC⊕ V∨C to WC⊕W∨C such thatτ ◦ J ◦ τ−1 is a generalized complex structure onW for
all (or a family of) generalized complex structuresJ on V. A special case of this duality
can easily be seen to be the right starting point in generalizing the symplectic/complex
correspondence in[23]. To see this, letM be a real manifold with trivial tangent bundle,X a
real torus with its normal group structure andV the tangent space toX at the identity, thought
of as a trivial bundle onM. Let X̂ be the dual torus toX. ThenTM×X

∼= π∗(TM ⊕ V ), and
TM×X̂

∼= π̂∗(TM ⊕ V∨), so for any isomorphismL : TM → V we have that

π∗
(

0 L

−L−1 0

)
(3.1)

is a complex structure onM ×X and

π̂∗
(

0 L

−L∨ 0

)
(3.2)

is a symplectic structure onM × X̂. Before pulling back, these structures, thought of as
generalized complex structures as inExample 2.1onV ⊕ TM andV∨ ⊕ TM , are related by
the obvious map

V ⊕ TM ⊕ V∨ ⊕ T∨M → V∨ ⊕ TM ⊕ V ⊕ T∨M.

4. Mirror partners of generalized almost complex structures and associated Dirac
structures

In this section we consider a manifoldM equipped with a real vector bundleV where
the rank ofV equals the dimension ofM. For any connection∇ onV we show how to build
generalized almost complex structures onX = tot(V ) in terms of data on the base manifold
M. We show that there is a bijective correspondence between generalized almost complex
structures built in this way onX and generalized almost complex structures of the same type
on X̂ = tot(V∨) built using∇∨.

Let X be the total space of any vector bundleV over a manifoldM. Then we have the
exact tangent sequence

0→ π∗V
j→ TX

dπ→π∗TM → 0 (4.1)
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A connection on the bundleV is by definition a map of sheaves

V
∇→V ⊗ T∨M

satisfying∇(fσ) = σ ⊗ df + f∇(σ) for all local sectionsf of C∞M andσ of V. We can use
any such connection to give a splitting of the above tangent sequence. Namely, let

π∗∇ : π∗V → π∗V ⊗ T∨X

be the pullback of∇ and letS be the tautological global section ofπ∗V on X. ThenD =
(π∗∇)(S) provides a map of vector bundlesπ∗V ← TX. Now its easy to see that this map
is a splitting of(4.1). Indeed, given a local frame{ei} of V over an open setU ⊆ M, define
smooth functionsξi on π−1(U) by ξi(ajej(m)) = ai for eachm in M. Together with the
functionsxi ◦ π, for {xi} coordinates onU ⊆ M, these form a coordinate system inπ−1(U)
in which we havej(ei) = ∂/∂xii. In these coordinates we have that onπ−1(U),

S = ξiπ
−1ei

and so if we defineD by

D = (π∗∇)(S) = π−1ei ⊗ dξi + ξiπ
−1ej ⊗ π∗Aji, (4.2)

where∇ej = ej ⊗ Aji then sinceπ∗Aji annihilates the image ofj we have that

D(j(π−1ek)) = (π−1ei)(dξij(π−1ek)) = π−1ek

and soD ◦ j is the identity. We will write this splitting onX as

Consider the isomorphism

F : TX ⊕ T∨X → π∗V ⊕ π∗TM ⊕ π∗V∨ ⊕ π∗T∨M, F =




D 0

dπ 0

0 j∨

0 α∨


 . (4.3)

with inverse

F−1 : π∗V ⊕ π∗TM ⊕ π∗V∨ ⊕ π∗T∨M → TX ⊕ T∨X ,

F−1 =
(

j α 0 0

0 0 D∨ (dπ)∨

)
. (4.4)
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These maps intertwine the obvious quadratic forms and therefore ifJ is a generalized al-
most complex structure onV ⊕ TM thenJ = F−1(π∗J )F is a generalized almost complex
structure onX.

Definition 4.1. If ∇ is any connection onV then we define a∇-lifted generalized almost
complex structure to be a generalized almost complex structure onX = tot(V ) which can
be expressed asJ = F−1(π∗J )F whereJ is a generalized almost complex structure onX
andF depends on∇ as explained above.

Now using the dual connection∇∨, we may split the sequence tangent sequence ofX̂ as

Of course we will also need the maps

F̂ : TX ⊕ T∨X → π∗V∨ ⊕ π̂∗TM ⊕ π̂∗V ⊕ π̂∗T∨M, F̂ =




D̂ 0

dπ̂ 0

0 ĵ∨

0 α̂∨


 (4.5)

with inverse

F̂−1 : π∗V∨ ⊕ π∗TM ⊕ π∗V ⊕ π̂∗T∨M → TX ⊕ T∨X ,

F̂−1 =
(

ĵ α̂ 0 0

0 0 D̂∨ (dπ̂)∨

)
. (4.6)

Now if we take any

J ∈ GL(V ⊕ TM ⊕ V∨ ⊕ T∨M)

we can apply the duality transformation along the fibers to get

Ĵ ∈ GL(V∨ ⊕ TM ⊕ V ⊕ T∨M).

Clearly this transformation intertwines the quadratic forms and soJ is a generalized almost
complex structure onV ⊕ TM if and only if Ĵ is a generalized almost complex structure
onV∨ ⊕ TM . ThereforeJ = F−1(π∗J )F is a generalized almost complex structure onX
if and onlyĴ = F̂−1(π̂∗Ĵ )F̂ is a generalized almost complex structure onX̂. At this point
we will impose an extra constraint on these structures.

Definition 4.2. A ∇-lifted generalized almost complex structureJ = F−1(π∗J )F will be
calledadapted if

J(V ⊕ V∨) = TM ⊕ T∨M.
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We will assume thatJ is an adapted,∇-lifted generalized almost complex structure from
now on.

Remark 4.3. It is clear from the construction above thatJ is adapted if and only if̂J is.

Finally, let us record the explicit formulas for the operatorsJ, Ĵ, J andĴ. The adapted
condition together with the fact thatJ2 = −1 and thatJ preserves the quadratic form ensure
that it is of the form

J =




0 J12 0 J22

J13 0 −J∨22 0

0 J31 0 −J∨13

−J∨31 0 −J∨12 0




, J ∈ GL(V ⊕ TM ⊕ V∨ ⊕ T∨M) (4.7)

subject to

J12J13− J22J
∨
31 = −1, (4.8)

J12J
∨
22+ J22J

∨
12 = 0, (4.9)

J13J12− J∨22J31 = −1, (4.10)

J13J22+ J∨22J
∨
13 = 0, (4.11)

J31J13+ J∨13J
∨
31 = 0, (4.12)

J∨31J12+ J∨12J31 = 0. (4.13)

With this notation we have

Ĵ =




0 J31 0 −J∨13

−J∨22 0 J13 0

0 J12 0 J22

−J∨12 0 −J∨31 0




, Ĵ ∈ GL(V∨ ⊕ TM ⊕ V ⊕ T∨M) (4.14)

and so

J =
(

j(π∗J12)(dπ)+ α(π∗J13)D j(π∗J22)α∨ − α(π∗J∨22)j
∨

D∨(π∗J31)(dπ)− (dπ)∨(π∗J∨31)D −D∨(π∗J∨13)α
∨ − (dπ)∨(π∗J∨12)j

∨

)

(4.15)

and

Ĵ =

 ĵ(π̂∗J31)(dπ̂)− α̂(π̂∗J∨22)D̂ −ĵ(π̂∗J∨13)α̂

∨ + α̂(π̂∗J13)ĵ∨

D̂∨(π̂∗J12)(dπ̂)− (dπ̂)∨(π∗J∨12)D̂ D̂∨(π̂∗J22)α̂∨ − (dπ̂)∨(π̂∗J∨31)ĵ
∨


 .

(4.16)
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Remark 4.4. Notice that the mirror symmetry transformation “exchanges”J12 with J31
andJ22 with −J∨13.

We have written down the bijective correspondence between∇-lifted, adapted, general-
ized almost complex structures onX and∇∨-lifted, adapted, generalized almost complex
structures on̂X. We will show below, in the case that∇ is flat, thatJ is integrable if and
only if Ĵ is.

4.1. Associated almost Dirac structures

For each of the generalized complex structures onX that we consider, there is a natural
almost Dirac structure that appears on the base manifoldM. It does not depend on the
connection used to split the tangent sequence ofX→ M. An almost Dirac structure on
M is just [9] a maximally isotropic sub-bundle ofTM ⊕ T∨M . Now the isomorphismJ,
given in Eq.(4.7), preserves the quadratic form and when restricted toV ⊕ V∨, gives an
isomorphismV ⊕ V∨ → TM ⊕ T∨M which preserves the obvious quadratic forms. Hence
the image ofV is a maximally isotropic subspace ofTM ⊕ T∨M . In other words it is an almost
Dirac structure onM which we will call
, where


 = J(V ) = J13(V )− J∨31(V ) = Ĵ(V ).

Example 4.5.

(1) Suppose we use our method to construct an almost complex structure onX = tot(V ) out
of some arbitrary connection onV. Then we necessarily have thatJ13 is an isomorphism
andJ31 = 0. Hence
 = TM .

(2) If instead we put an almost symplectic structure onX = tot(V ) then
 = T∨M .

Notice that the almost Dirac structure


̂ = Ĵ(V∨) = −J22(V
∨)− J∨12(V

∨) = J(V∨)

arising from the mirror generalized almost complex structure is always transverse to
.
Hence we always get a pair


⊕ 
̂ = TM ⊕ T∨M

of complementary almost Dirac structures. Later we will return to these structures and study
their integrability and the existence of flat connections on them.

4.2. Mirror symmetry for generalized almost Kähler manifolds

In this section, we study the case of a pair of∇-lifted, adapted generalized almost complex
structures on the total space of a vector bundle which form a generalized almost Kähler
structure as described in Section2.3. Under these conditions, we write down the mirror
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transformation rule that allows us to relate the generalized almost Kähler metricG on X
and the mirror generalized almost Kähler metricĜ on X̂. We observe that in general, the
local transformation rules for the pair (g, b) that exist in the physics literature, continue to
hold in this setting, even though here neitherJ norJ ′ needs to be aB-field transform of a
generalized complex structure of complex type.

First of all notice that the mirror transform of a generalized almost Kähler pair (J,J ′) is
also generalized almost Kähler. Indeed, if we letJ = F−1(π∗J )F andJ ′ = F−1(π∗J ′)F ,
thenJ andJ ′ commute if and only ifJ andJ ′ commute. This, in turn, is equivalent tôJ

andĴ ′ commuting which happens if and only if̂J = F̂−1(π̂∗Ĵ)F̂ andĴ ′ = F̂−1(π̂∗Ĵ ′)F̂
commute. Similarly,G = −F−1π∗(JJ ′)F is positive definite if and only if−JJ ′ is.

This is equivalent to−ĴĴ ′ being positive definite, which happens if and only ifĜ =
−F̂−1π̂∗(ĴĴ ′)F̂ is positive definite. By our assumptions onJ andJ ′ we may writeG =
−JJ ′ as

G : V ⊕ TM ⊕ V∨ ⊕ T∨M → V ⊕ TM ⊕ V∨ ⊕ T∨M,

G = −JJ′ =




G11 0 G21 0

0 G14 0 G24

G31 0 G∨11 0

0 G34 0 G∨14


 , (4.17)

whereG21 = G∨21, G24 = G∨24, G31 = G∨31, G34 = G∨34. Finally, using the fact that this
matrix squares to the identity, we get:

G11 = −J12J
′
12+ J22J

′
31
∨
, G21 = J12J

′
21
∨ + J22J

′
11
∨
,

G14 = −J13J
′
11
∨ + J∨22J

′
31, G24 = −J13J

′
21− J∨22J

′
12
∨
,

G31 = −J31J
′
12− J∨13J

′
31
∨
, G34 = J∨31J

′
11+ J∨12J

′
31.

ThereforeG′ = −ĴĴ ′ comes out to be

G′ = −ĴĴ ′ =




G∨11 0 G31 0

0 G14 0 G24

G21 0 G11 0

0 G34 0 G∨14


 . (4.18)

Remark 4.6. Notice that the mirror symmetry transformation “exchanges”G11 with G∨11,
G21 with G31, and “preserves”G14 andG34.

Now writing G in terms ofg andb [12]:

G =
(
−g−1b g−1

g− bg−1b bg−1

)
(4.19)

and similarly writingĜ in terms ofĝ andb̂ we can easily manipulate the resulting equations
to yield the following formulas for the metrics andB-fields in terms of the vector bundle
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mapsGij on the base manifold.

g = D∨π∗G−1
21 D+ (dπ)∨π∗G−1

24 dπ,

b = D∨π∗(G∨11G
−1
21 )D+ (dπ)∨π∗(G∨14G

−1
24 ) dπ,

ĝ = D̂∨π̂∗G−1
31 D̂+ (dπ̂)∨π̂∗G−1

24 dπ̂,

b̂ = D̂∨π̂∗(G11G
−1
31 )D̂+ (dπ̂)∨π̂∗(G∨14G

−1
24 ) dπ̂.

Notice that our assumptions on the compatibility of the generalized complex structures, and
the foliation and transverse vector bundle, imply that the metricg andB-field b do not mix
the horizontal and vertical directions.

Now if we chose local vertical coordinates adapted to the flat connection,yα on X and
ŷα on X̂ andxi on the base then the above just means that locally we have

g = gij(x) dxi dxj + hαβ(x) dyα dyβ, b = bij(x) dxi dxj + Bαβ(x) dyα dyβ,

ĝ = gij(x) dxi dxj + ĥαβ(x) dŷα dŷβ, b̂ = bij(x)dxi dxj + B̂αβ(x) dŷα dŷβ,

where of course,xi meansxi ◦ π on X andxi ◦ π̂ on X̂.
Then the Buscher transformation rules[5,6] (we used[10] as a reference)

(h+ B)ĥ(h− B) = h and (h+ B)B̂(h− B) = −B

are verified from the easily checked identities

(G−1
21 +G∨11G

−1
21 )G−1

31 (G−1
21 −G∨11G

−1
21 ) = G−1

21

and

(G−1
21 +G∨11G

−1
21 )G11G31

−1(G−1
21 −G∨11G

−1
21 ) = −G∨11G21

−1

respectively.
We now work out the transformation rules relating the two almost complex structures,

J+, J−, and their mirror partnerŝJ+ andĴ−. We have

J+ = J1+ J2(g+ b) and J− = J1+ J2(b− g).

By combining the results above we can easily compute that

J+ = j(π∗(J12+ J22(G
∨
14+ 1)G−1

24 )) dπ + α(π∗(J13− J∨22(G
∨
11+ 1)G−1

21 ))D

and

J− = j(π∗(J12+ J22(G
∨
14− 1)G−1

24 )) dπ + α(π∗(J13− J∨22(G
∨
11− 1)G−1

21 ))D.
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Hence

Ĵ+ = ĵ(π̂∗(J31− J∨13(G
∨
14+ 1)G−1

24 )) dπ̂ + α̂(π̂∗(−J∨22+ J13(G11+ 1)G−1
31 ))D̂

and

Ĵ− = ĵ(π̂∗(J31− J∨13(G
∨
14− 1)G−1

24 )) dπ̂ + α̂(π̂∗(−J∨22+ J13(G11− 1)G−1
31 ))D̂.

5. Branes

In this section, we give some ideas of how one can transfer branes[12,17] from a
generalized almost complex manifold to its mirror partner. We will present in detail only
a very restricted case. This construction closely parallels that in[20,22]. Consider the
following definition from[17] which also appears in a more general form in[12].

Definition 5.1 (Kapustin [17]). Let (X,J ) be a generalized (almost) complex manifold.
Consider triples

(Y,L,∇L),

wheref : Y ↪→ X is a sub-manifold ofX, L is a Hermitian line bundle onY, and∇L is a
connection onL. Such a triple is said to be ageneralized complex brane if the bundle

{(v, α) ∈ TY ⊕ (T∨X |Y )|f ∗ ◦ (df )∨α = ιvF }

is preserved by the restriction ofJ to Y, whereF is the curvature two-form of∇L.

We studied some special cases[12] of these branes in[2] under the name of generalized
Lagrangian sub-manifolds and found some interesting relationships to sub-manifolds of
X which inherit generalized complex structures (which we call generalized complex sub-
manifolds).

Suppose thatM is ann-manifold,V is a rankn vector bundle onM, ∇ is a connection
on V, X is the total space ofV, X̂ is the total space ofV∨ andJ is an adapted,∇-lifted
(see Section4) generalized almost complex structure onV. Let S be a sub-manifold ofM,
W ⊆ V |S a sub-bundle,Y the total space ofW, and Ŷ the total space of the sub-bundle
Ann(W) ⊆ V∨|S . Then we propose that the relationship betweenY andŶ is a special case
of a potential generalization of the relationship betweenA-cycles andB-cycles in mirror
symmetry (see e.g.[20] and references therein). We justify this with the following lemma.

Lemma 5.2. Under the conditions of the preceding paragraph, the triple (Y,C⊗ C∞Y , d)
is a generalized complex brane of (X,J ) if and only if the triple (Ŷ ,C⊗ C∞

Ŷ
, d) is a

generalized complex brane of (X̂, Ĵ ).
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Proof. In this proof, we will be using the notation of Section4. We need to show that

J(TY ⊕ Ann(TY )) = TY ⊕ Ann(TY ) (5.1)

if and only if

Ĵ(TŶ ⊕ Ann(TŶ )) = TŶ ⊕ Ann(TŶ ), (5.2)

where it is to be understood that we are restrictingJ to Y andĴ to Ŷ . Observe that when
understood as bundles onY, we have

TY = j(π∗W)⊕ α(π∗TS),

Ann(TY ) = D∨(π∗(Ann(W)))⊕ (dπ)∨(π∗(Ann(TS)))

and when understood as bundles onŶ , we have

TŶ = ĵ(π̂∗(Ann(W)))⊕ α̂(π̂∗TS), Ann(TY ) = D̂∨(π̂∗(W))⊕ (dπ̂)∨(π̂∗(Ann(TS))).

From this perspective it is clear that both(5.1) and (5.2)are both equivalent simply to the
conditions (understanding thatJ is restricted toS)

J13(W) ⊆ TS, (5.3)

J12(TS) ⊆ W, (5.4)

J22(Ann(TS)) ⊆ W, (5.5)

J31(TS) ⊆ Ann(W), (5.6)

and therefore we are done. A more general treatment will involve replacingW by an affine
sub-bundle which will result in a non-trivial line bundle on the mirror side. A more general
story will be the result of upcoming work. The extension of the results in this section to the
case of torus bundles is clear from the development in Section3 of Part II of this paper[1].
We hope that in a suitable extended version of the homological mirror symmetry conjecture
[19], generalized complex manifolds would be assigned categories in a natural way, and
branes would be related to objects in these categories.�

Remark 5.3. On a torus bundleZ→ M, whereZ is an orientable compact manifold,
it is plausible that the correspondence which we are describing here, when thought of
as a correspondence between homology classes onZ to homology classes on the dual
torus bundleẐ→ M agrees, upon using Poincaré Duality, with the correspondence in
cohomology given in Section3 of Part II of this paper[1].

6. The mirror transformation on spinors and the Fourier transform

In this section we study a map from certain complex valued differential forms on the
total space of a vector bundle to complex valued differential forms on the total space of the
dual vector bundle. We show that the line sub-bundle of the bundle of differential forms
associated to an adapted,∇-lifted generalized almost complex structure has a sub-sheaf
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which goes under this correspondence to the sub-sheaf associated to the mirror generalized
almost complex structure. The idea of using a Fourier transform in the context ofT-duality
for generalized complex structures has appeared in a slightly different context in both[12]
(based on ideas appearing in[21]) and also[10,26]and the references therein.

Consider a vector bundleV of rankn on a manifoldM. There is an isomorphism

∧
V∨ ⊗ C→

(∧
V ⊗

n∧
V∨
)
⊗ C

given by

φ �→
∫

(φ ∧ exp(κ)), (6.1)

whereκ is the canonical global section of (V ⊗ V∨)⊗ C ⊆ ∧2(V ⊕ V∨)⊗ C and

∫
:
∧

(V ⊕ V∨)⊗ C→
∧

V ⊗
n∧

V∨ ⊗ C

is the projection map. Furthermore, this map decomposes into isomorphisms

p∧
V∨ ⊗ C→

n−p∧
V ⊗

n∧
V∨ ⊗ C,

and also induces a Fourier transform isomorphism, which we will callF.T.

∧
V∨ ⊗

∧
T∨M ⊗ C

F.T.→
∧

V ⊗
∧

T∨M ⊗
n∧

V∨ ⊗ C

which in turn decompose into isomorphisms

(
q∧

T∨M ⊗
p∧

V∨ ⊗ C
)
→
(

q∧
T∨M ⊗

n−p∧
V ⊗

n∧
V∨ ⊗ C

)
.

Lemma 6.1. Let V be a rank n orientable vector bundle on an n-manifold,J a generalized
almost complex structure on the vector bundle V ⊕ TM satisfyingJ(V ⊕ V∨) = TM ⊕ T∨M ,
and Ĵ the mirror structure. Then the composition of the map F.T. with any trivialization of∧n

V∨ takes the line bundle L ⊆ ∧(V ⊕ TM)∨ ⊗ C which represents J to the line bundle
L̂ ⊆ ∧(V ⊕ TM)∨ ⊗ C which representŝJ.

Proof. First of all notice that changing the trivialization of
∧n

V multiplies the image of
F.T. by a non-zero function on the base manifold. This is an automorphism of image of the
composed map along with its inclusion into

∧
(V ⊕ TM)∨ ⊗ C. The (+i) eigenbundle ofJ
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is the graph of the map

−iJ|(V⊕V∨)⊗C : (V ⊕ V∨)⊗ C→ (TM ⊕ T∨M)⊗ C.

Similarly, the (+i) eigenbundle ofĴ is the graph of

−iJ|(V∨⊕V )⊗C : (V ⊕ V∨)⊗ C→ (TM ⊕ T∨M)⊗ C.

The sectionsφ of L therefore satisfy

ιv−iJ13vφ + i(J∨31v)
∧

φ = 0, (6.2)

ιiJ∨22α
φ + (α+ iJ∨12α)

∧
φ = 0 (6.3)

for all sectionsv of V andα of V∨.
We need to show that the sectionF.T.(φ) of

∧
(V∨ ⊕ TM)∨ ⊗∧n

V∨ ⊗ C satisfies

ι−iJ13vF.T.(φ)+ (v+ iJ∨31v)
∧

F.T.(φ) = 0, (6.4)

ια+iJ∨22α
F.T.(φ)+ (iJ∨12α)

∧
F.T.(φ) = 0 (6.5)

for all sectionsv of V andα of V∨. These equations hold for the mapF.T. if and only if
they hold for the composition ofF.T. with any trivialization. This can be seen by writing
F.T. as the composed map followed by the action of “wedging” with a global section of∧n

V∨. Eqs.(6.4) and (6.5)will follow immediately from taking the Fourier transform of
both sides of(6.2) and (6.3)and using the following lemma. �

Lemma 6.2. For any sections ζ of
∧

(V ⊕ TM)∨ ⊗ C, v of V ⊗ C, w of TM ⊗ C, α of
V∨ ⊗ C and β of T∨M ⊗ C we have

(i) F.T.(ιvζ) = v
∧

F.T.(ζ);
(ii) F.T.(ιwζ) = ιwF.T.(ζ);

(iii) F.T.(α
∧

ζ) = ιαF.T.(ζ);
(iv) F.T.(β

∧
ζ) = β

∧
F.T.(ζ).

Proof. It clearly suffices to prove this in the case thatζ is a section of
∧p(V ⊕ TM)∨.

Notice also that
∫ ◦ ιv = 0 andιvκ = −v for any sectionv of V andιακ = α for any section

α of V∨. Then we have

F.T.(ιvζ) =
∫

(ιvζ)
∧

exp(κ) =
∫

ιv(ζ
∧

exp(κ))− (−1)p
∫

ζ
∧

ιv exp(κ)

= −(−1)p
∫

ζ
∧

ιv exp(κ) = −(−1)p
∫

ζ
∧

(ιv(κ))
∧

exp(κ)

= (−1)p
∫

ζ
∧

v
∧

exp(κ) =
∫

v
∧

ζ
∧

exp(κ)
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= v
∧∫

ζ
∧

exp(κ) = v
∧

F.T.(ζ),

F.T.(ιwζ) =
∫

(ιwζ)
∧

exp(κ) =
∫

ιw(ζ
∧

exp(κ))

= ιw

∫
(ζ
∧

exp(κ)) = ιwF.T.(ζ),

F.T.(α
∧

ζ) =
∫

(α
∧

ζ
∧

exp(κ)) = (−1)p
∫

(ζ
∧

α
∧

exp(κ))

= (−1)p
∫

(ζ
∧

ια exp(κ)) = ια

∫
(ζ
∧

exp(κ)) = ιαF.T.(ζ),

F.T.(β
∧

ζ) =
∫

β
∧

ζ
∧

exp(κ) = β
∧∫

ζ
∧

exp(κ) = β
∧

F.T.(ζ) �

Let M ann-manifold andX→π M be the total space of an orientable vector bundleV on
M, with connection∇ andJ a∇-lifted, adapted generalized almost complex structure onX.
Let X̂→π̂ M be the total space ofV∨. Using∇ we may realizeπ∗(

∧
V∨ ⊗∧ T∨M ⊗ C) as a

sub-bundle of
∧

T∨X ⊗ C. NowJ determines a spinorial line bundleL ⊆ ∧ T∨X ⊗ C which
is simply the image under this isomorphism of the pullbackπ∗L. Similarly, Ĵ determines a
spinorial line bundlêL ⊆ ∧ T∨

X̂
⊗ C isomorphic toπ̂∗L̂. Therefore, interpreting the Fourier

transform maps as isomorphismsπ∗π−1L→ π̂∗π̂−1L̂ we can map certain sections ofL
over open sets of the formπ−1(U) to sections of̂L over open sets of the form̂π−1(U). We
have shown the following lemma.

Lemma 6.3. Let V is an orientable rank n vector bundle on an n-manifold M and J an
adapted,∇-lifted generalized almost complex structure on X = tot(V ) with associated line
bundle L. Let the mirror generalized almost complex structure have associated line bundle
L̂. Then their are sub-sheaves, π−1L ⊆ L and π̂−1L̂ ⊆ L̂ such that if we compose the
isomorphism

π∗π−1
(∧

T∨M ⊗
∧

V∨ ⊗ C
)

F.T.→ π̂∗π̂−1

(∧
T∨M ⊗

∧
V ⊗

n∧
V∨ ⊗ C

)

with any trivialization of
∧n

V∨, the resulting isomorphism

π∗
(∧

T∨X ⊗ C
)
⊇ π∗π−1

(∧
T∨M ⊗

∧
V∨ ⊗ C

)
→ π̂∗π̂−1

(∧
T∨M ⊗

∧
V ⊗ C

)
⊆ π̂∗

(∧
T∨

X̂
⊗ C

)
restricts to an isomorphism

π∗L ⊇ π∗π−1L→ π̂∗π̂−1L̂ ⊆ π̂∗L̂.
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This is useful because, from the∇-lifted property, its easy to see thatL = π−1L⊗ C∞X
and L̂ = π̂−1L̂⊗ C∞

X̂
. Therefore forU small enough, representative spinors forJ over

π−1(U) andĴ over π̂−1(U) exist and can be chosen as pullbacks of sections ofL andL̂

overU. They are exchanged under the Fourier transform even though we have not written
down a map between the push-forwards ofL andL̂. The situation will be much more simple
in the case of torus bundles.

Remark 6.4. It is important to remember that the geometry ofJ is not just captured by the
abstract line bundleL up to isomorphism, but rather, byL together with its embedding into
the differential forms.

Understanding mirror symmetry in terms of a relationship between pure spinors was
approached with similar techniques in[10].

7. Transverse foliations and generalized Kähler geometry

In this section we study in the abstract some of essential geometric details of our con-
struction without reference to the specific context (e.g. the type of bundle).

Definition 7.1. Suppose thatX is a foliated manifold and letP ⊆ TX be the involute sub-
bundle tangent to the leaves of the foliation. We say that a generalized complex structureJ
andP arecompatible if there exists a complementary sub-bundleQ ⊆ TX so that

J|P⊕Ann(Q) : P⊕ Ann(Q)→ Q⊕ Ann(P)

is an isomorphism of vector bundles. Under this condition, we will callQ aJ-compliment
to P. ForQ aJ-compliment toP we will often tacitly identifyP∨ with AnnQ, andQ∨
with AnnP.

Notice that the (+i) eigenbundle,E of J is in this case necessarily transverse to both
PC⊕ Ann(Q)C andQC⊕ Ann(P)C. HenceE is the graph of a map fromPC⊕ Ann(Q)C to
QC⊕ Ann(P)C. In fact, it is easy to see that we haveE = graph(−iJ) where we consider
(−iJ) as a map fromPC⊕ Ann(Q)C toQC⊕ Ann(P)C.

Example 7.2.

(i) Suppose thatX is a manifold equipped with an involute distributionP ⊆ TX of half the
dimension ofX. LetJ be the generalized almost complex structure onX corresponding
to a non-degenerate real two-formω. ThenP andJ are compatible if and only ifP
defines a Lagrangian foliation onX. Indeed, the compatibility shows thatω defines
an isomorphism fromP to AnnP, which shows thatP is Lagrangian. Conversely, if
P is Lagrangian, then by (see[7]) choosing an almost complex structureJ so that
the isomorphism−ωJ : TX→ T∨X represents a Riemannian metric onX, it is easy to
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see that the vector bundleJP is aJ-compliment toP, and soJP is also Lagrangian.
This example signifies some relationship of the content of this paper with the area of
integrable systems.

(ii) On the other hand ifX is a manifold equipped with an involute distributionP ⊆ TX

of half the dimension ofX andJ is the generalized almost complex structure onX
corresponding to an almost complex structureJ thenP andJ are compatible if and
only if JP ∩ P = (0). In other words the leaves of the foliation are totally real sub-
manifolds[4]. In this case theJ-compliment toP is fixed uniquely asJP.

(iii) One of the main classes of examples in Part II of this paper is whereX is ann-torus
bundle with section over ann-manifold,J is a semi-flat generalized complex structure,
P is the vertical foliation tangent to the torus fibers, andQ is the horizontal foliation
given by the splitting of the tangent sequence given by the connection as will be
explained in Section2 of Part II.

Remark 7.3. In the above and in much of what follows, the fact thatP is involute is
irrelevant. That is to say, it could just be a sub-bundle of the tangent bundle. However, it
will be taken to be involute for the applications that we have in mind, for instance whenP
represents the tangent directions to a torus fibration, as will be discussed in Part II[1].

Definition 7.4. Suppose thatJ andJ ′ constitute a generalized almost Kähler pair of
generalized almost complex structures andP ⊆ TX is a sub-bundle of the tangent bundle
of half the dimension. Then we say thatP is compatible with the pair (J,J ′) when, using
the notation introduced in Section2.1

J2(Ann(P)) ⊆ P, (7.1)

J3(P) ⊆ Ann(P), (7.2)

J ′2(Ann(P)) ⊆ P, (7.3)

J ′3(P),⊆ Ann(P), (7.4)

J1J
′
1(P) ⊆ P, (7.5)

J ′1J1(P) ⊆ P, (7.6)

J4J
′
4(Ann(P)) ⊆ Ann(P), (7.7)

J ′4J4(Ann(P)) ⊆ Ann(P). (7.8)

Notice that if there is a sub-bundleQ which is both aJ-compliment and anJ ′-
compliment toP thenP is compatible with (J,J ′). The converse will be shown below. In
the ordinary K̈ahler case2.4 the condition thatP is compatible with (J,J ′) simply says
thatP is Lagrangian with respect to the symplectic structure. In theB-transformed almost
Kähler case where we have an almost Kähler pair (J, ω) the conditions are as follows:P
must be Lagrangian with respect to the symplectic structureω and alsoB(ω−1BP,P) = 0
andB(JP,P) = 0.
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Theorem 7.5. If X is a 2n-dimensional real manifold then a rank n bundle P ⊆ TX is
compatible with a generalized almost Kähler pair (J,J ′) if and only if there is a sub-
bundleQ ⊆ TX which is both a J-compliment and a J ′-compliment to P. These properties
specify Q uniquely.

Proof. If such aQ exists then it is clear thatP andQ are both compatible with the pair
(J,J ′). Furthermore, the property thatQ is aJ-compliment and aJ ′-compliment toP for
a generalized K̈ahler pair (J,J ′) fixesQ uniquely. Indeed, if we are in this situation and
G = −JJ ′ is the generalized K̈ahler metric then we have that

g− bg−1b = G3 = −J ′3J1− J ′4J3.

Therefore the isomorphism (g− bg−1b) takesP to Ann(Q) and soQ must be the perpen-
dicular to complement ofP with respect to the metric (g− bg−1b). We will now realizeQ
explicitly as the image of a different automorphismK+ ∈ GL(TX) of the tangent bundle
with itself which becomes an almost complex structure in the whenb = 0. Therefore the
proof will be completed via the following lemma. �

Lemma 7.6. If (J,J ′) is a generalized almost Kähler pair then the map

K+ = J+(1− g−1b) = J1+ J ′1

is an isomorphism of the tangent bundle with itself. If P is compatible with the pair (J,J ′)
then K+ takes P to a sub-bundle Q, transversal to P, and we have that

J|P⊕Ann(Q) : P⊕ Ann(Q)→ Q⊕ Ann(P)

and

J ′|P⊕Ann(Q) : P⊕ Ann(Q)→ Q⊕ Ann(P)

are isomorphisms of vector bundles. In other words, Q is both a J-compliment and a
J ′-compliment to P.

Proof. First of all, notice thatK+ is an isomorphism of the vector bundleTX with it-
self. Indeed, the vector bundle map (g− bg−1b) from TX to T∨X corresponds to the
metric g(v, w)+ g−1(bv, bw) which is positive definite and hence if we considerf to
(g− bg−1b)−1, we see that

K+(−(g+ b)fJ+) = 1.

Now we have

G3J1 = −(J3J
′
1+ J4J

′
3)J1− J3J

′
1J1− J4J

′
3J1

= −J3J
′
1J1− J4(J3J

′
1+ J4J

′
3− J ′4J3)
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= −J3J
′
1J1− J4J3J

′
1− (J4)2J ′3+ J4J

′
4J3

= −J3J
′
1J1− J4J3J

′
1− (−1− J3J2)J ′3+ J4J

′
4J3

= −J3J
′
1J1− J4J3J

′
1+ J ′3+ J3J2J

′
3+ J4J

′
4J3

= −J3J
′
1J1+ J3J1J

′
1+ J ′3+ J3J2J

′
3+ J4J

′
4J3.

By inspection of the definition of compatibility ofP with the pair (J,J ′) we have that all
of these terms sendP into Ann(P). ThusG3J1(P) ⊆ Ann(P). Since the roles ofJ andJ ′
are interchangeable we have,

G3J
′
1 = −J ′3J1J

′
1+ J ′3J ′1J1+ J3+ J ′3J ′2J3+ J ′4J4J

′
3

as well. HenceG3J
′
1(P) ⊆ Ann(P). Therefore the image ofP under the isomorphism

K+ = J1+ J ′1 is the perpendicular sub-bundle toP with respect to the metricG3.
Now, in order to show the remaining claims, it suffices to defineQ as K+(P) and

show thatJ1(Q) ⊆ P andJ4(Ann(P)) ⊆ Ann(Q). Indeed suppose that we have shown
this. Note that reversing the roles ofJ andJ ′ does not changeQ and so we get that
J ′1(Q) ⊆ P andJ ′4(Ann(P)) ⊆ Ann(Q), and thereforeJ(Q⊕ Ann(P)) ⊆ P⊕ Ann(Q)
andJ ′(Q⊕ Ann(P)) ⊆ P⊕ Ann(Q), which is enough sinceJ andJ ′ are isomorphisms.

Let v be an element of a fiber ofQ. We may express it as (J1+ J ′1)w for a unique fiber
w of P over the same point. Then

J1v = J1
2w+ J1J

′
1w = −w− J2J3w+ J1J

′
1w

which is an element of the fiber ofP over the same point.
Let µ be an element of a fiber of Ann(P). Then, ifv is in the fiber ofQ over the same

point, we have that (J4µ)v = −µ(J1v) which is zero by the previous paragraph. Therefore
J4µ is in the fiber of Ann(Q) over the same point. �

The reader may wonder about the possibility of instead taking

K− = J1− J ′1 = J−(1+ g−1b).

Lemma 7.7. K− is an isomorphism of the tangent bundle with itself. In general it is not
equal to K+. However, if P is compatible with the generalized almost Kähler pair (J,J ′),
we have that K+(P) = K−(P). In fact we have that they are both equal to the orthogonal
complement of P with respect to the metric G3 = g− bg−1b.

Proof. To see thatK− is an isomorphism, simply note that−f (g− b)J−K− = 1 wheref is
the inverse tog− bg−1b. DefineQ+ = K+(P) andQ− = K−(P). By the above arguments
it is clear thatK− = J1− J ′1 is an isomorphism fromP to the orthogonal complement of
Pwith respect to the metricG3 = g− bg−1b. Therefore we haveK+(P) = K−(P). �

Remark 7.8. As an aside, we mention that for any generalized almost complex structure,
J there is another oneJ ′ such that (J,J ′) are a generalized almost Kähler structure.
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Since we will not be using this and since the proof precisely mimics the proof that every
almost symplectic manifold has a compatible almost complex structure we do not include
the proof here.

The next requirement that one should want to place on (J,J ′,P) is that the distribution
Q be involute. We plan to return to this analysis in a future paper. This is the analogue of
considering a flat connection in definition of the termsemi-flat in Section 2 of Part II[1].
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139, alg-geom/9411018.

http://online.itp.ucsb.edu/online/mp03/hitchin1/


558 O. Ben-Bassat / Journal of Geometry and Physics 56 (2006) 533–558

[20] N.C. Leung, S.T. Yau, E. Zaslow, From Special Lagrangian to Hermitian–Yang–Mills via Fourier–Mukai
Transform, Adv. Theor. Math. Phys. 4 (6) (2000) 1319–1341, math.DG/0005118.

[21] P. Bouwknegt, J. Evslin, V. Mathai,T-duality: topology change fromH-flux, Commun. Math. Phys. 249 (2)
(2004) 383–415, hep-th/0306062.

[22] U. Bruzzo, G. Marelli, F. Pioli, A Fourier transform for sheaves on Lagrangian families of real tori, J. Geom.
Phys. 41 (4) (2002) 312–329.

[23] D. Arinkin, A. Polishchuk, Fukaya category and Fourier transform, Winter School on Mirror Symmetry,
Vector Bundles and Lagrangian Submanifolds, Cambridge, MA, 1999, pp. 261–274, AMS/IP Stud. Adv.
Math. 23 (2001), math.AG/9811023.

[24] A. Strominger, S.T. Yau, E. Zaslow, Mirror symmetry isT-duality, Nucl. Phys. B 479 (1–2) (1996) 243–259.
[25] P. Severa, A. Weinstein, Poisson geometry with a 3-form background, Noncommutative Geometry and String

Theory, Yokohama, 2001, Progr. Theoret. Phys. Suppl. 144 (2001) 145–154, math.SG/0107133.
[26] C. Van Enckevort, Moduli spaces andD-brane categories of tori using SCFT, hep-th/0302226.
[27] X. Tang, A. Weinstein, Quantization and Morita equivalence for constant Dirac structures on tori,

math.QA/0305413.


	Mirror symmetry and generalized complex manifolds
	Introduction
	Notation, conventions, and basic definitions
	Generalized almost complex manifolds
	B- and beta-field transforms
	Generalized almost K"ahler manifolds

	T-duality
	T-duality in all directions
	More general T-duality

	Mirror partners of generalized almost complex structures and associated Dirac structures
	Associated almost Dirac structures
	Mirror symmetry for generalized almost K"ahler manifolds

	Branes
	The mirror transformation on spinors and the Fourier transform
	Transverse foliations and generalized K"ahler geometry
	Acknowledgments
	References


