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Abstract
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such as the Buscher rules. We show explicitly how spinors are transformed and discuss the induces
correspondence on branes under certain conditions.
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1. Introduction

Mirror symmetry is often thought of as relating the very different worlds of complex
geometry and symplectic geometry. It was recently shown by Hitidththat symplec-
tic and complex structures on a manifold have a simple common generalization called a
generalized complex structure. This is a complexified version of Dirac geofé¢tong
with an extra non-degeneracy condition. It is expected that mirror symmetry should give
rise to an involution on sectors of the moduli space of all generalized complex manifolds
of a fixed dimension. One of the most concrete descriptions of the mirror correspondence
is the Strominger—Yau—Zaslow pictuf24] in which mirror symmetry is interpreted as a
relativeT-duality along the fibers of a special Lagrangian torus fibration. This is sometimes
referred to asT-duality in half the directions”. In our previous wof&], we investigated the
linear algebraic aspects @fduality for generalized complex structures. See §5¢ for
the analogous story in Dirac geometry. In this paper, we go one step further and construct an
explicit mirror involution on certain moduli of generalized complex manifolds. Similarly
to the case of Calabi-Yau manifolds the definition of our mirror involution depends on
additional data. In our set up, we will consider generalized complex manifolds equipped
with a compatible torus fibration. This involution, when applied to such a manifold, gives
another with the same special properties, which we propose to identify as its mirror partner.
In the special cases of a complex or symplectic structure on a semi-flat Calabi—Yau manifold
our construction reproduces the stand&rduality of [20,22,23] In addition we get new
examples of mirror symmetric generalized complex manifolds, e.g. the ones coming from
B-field transforms of complex or symplectic structures.

If Vis a real vector space th¢i¥] a generalized complex structure ¥ris a complex
subspaceE C (V @ V) ® C that satisfiesE N E = (0) and is maximally isotropic with
respect to the canonical quadratic form éhg V) ® C. Let

fivevi - waewY

be a linear isomorphism which is compatible with the canonical quadratic forms.fThen
induces a bijection between generalized complex structurésaml generalized complex
structures orW. Transformations of this type can be viewed as linear analogues of the
T-duality transformations investigated in the physics literature [Eg26]and references
therein). Mathematically they were studied27] for Dirac structures and ii2] for general-
ized complex structures. In this paper, the relevant case is wherel & B, W = AV & B,
andf: A®@B® A @ BY - AV @& B® A ® BY is the obvious shuffle map.

A generalized complex structure on a manif&les a maximally isotropic sub-bundle of
(Tx ® TY) ® C that satisfie N E = (0) and thaf is closed under the Courant Bracket.
In this paper, we shall preform a relative version of thiduality for pairs of manifolds
that are fibered over the same base and where the two fibers over each point are “dual”
to each other. In other words we will find a way to apply the linear ideas above to the
torus fibered approach. On each fiber, this process will agree with the linear map described
above.

Throughout the paper as well as in Part Il we comment on how our results relate to some
of the well established results and conjectures of mirror symnjg®y20,22—24hnd also
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what they say in regards to the new developments in generaliabteKgeometnf12]
and the relationships between generalized complex geometry and string th2drx;,26]
which have appeared recently. As mentionefLifl we may interpret these dualities as be-
ing a generalization of the duality between thenodel and3-model in topological string
theory. In the generalized&ler case, they can be interpreted as dualities of supersym-
metric nonlinear sigma mode[41]. To this end, in Sectio® we sketch a relationship
between branes in the sense[2,17]in a semi-flat generalized complex structure and
branes in its mirror structure. For some simple examples of branes, we give the relationship
directly. We also show in Sectichthat the Buscher rulg$,6] for the transformation of
metric andB-field hold between the mirror pairs of generalizedhter manifolds that we
consider.

It will be very interesting to extend the discussion in Sectda a full-fledged Fourier—
Mukai transform on generalized complex manifolds. Unfortunately, the in-depth study of
branes in generalized complex geometry is obstructed by the complexity of the behavior of
sub-manifolds with regards to a generalized complex structure. Several subtle issues of this
nature were analyzed in our previous paf&r In particular we investigated in detail the
theory of sub and quotient generalized complex structures, described a zoo of sub-manifolds
of generalized complex manifolds and studied the relations among those. We also gave a
classification of linear generalized complex structures and constructed a category of linear
generalized complex structures which is well adapted to the question of quantization. In
a future work we plan to incorporate the structure of a torus bundle in this analysis and
construct a complete Fourier transform for branes.

For the benefit of the reader who may not be familiar with generalized complex geom-
etry, we have included Sectighwhich introduces the linear algebra and some basics on
generalized complex manifolds. More details on these basics may be fg@ntidri4—16]

2. Notation, conventions, and basic definitions

Overall, we will retain the notation and conventions from our previous ppeand so
we only recall the most important facts for this paper as well as some changes. The dual
of a vector spac® will be denoted a¥’V. We will often use the annihilator of a subspace
W C V, which we will denote

Ann(W) = {f e V'|flw =0} € V".
We will need the pairinge, o) onV & VV, given by (following[15])
(v+ fw+g) =—3(f(w)+g)forallv,we V, fge V.

Givenv € Vandf € VY, we will write either( f|v) or {(v| f) for f(v). This pairing corre-
sponds to the quadratic for@(v + f) = — f(v).

We will tacitly identify elements3 € A? V¥ with linear maps/ — VY. When thought
of in this way, we have that the map is skew-symmetbic: —B".
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We will often consider linear maps @ W — V' @ W’'. Sometimes, these be written
as matrices

T (Tl Tz) ’
T3 Ty

with the understandingthdy : V — W/, T . W — V', T3: V — W andT;: W — W’
are linear maps. All of these conventions will be extended to vector bundles and their
sections in the obvious way.

If M is a manifold, we leC53; denote the sheaf etal-valued C* functions onM. We
will use the same notation for a vector bundle and for its sheaf of sections. The tangent
and cotangent bundles & will be denoted by, and7y;. For a vector bundlé’ over
a manifoldM and a smooth map : N — M, we denote the pullback bundle V. A
section of f*V which is a pullback of a sectioa of V will be denotedf*(e). If fis an
isomorphism onto its image or the projection map of a fiber bundle, the sections of this
form give the sub-shegf~1V C f*V. We will sometimes replach® T, by Q3.

Now we will give some basic facts on generalized complex geometry that we will need
in the paper. For more information the reader may[8¢E2,14]

2.1. Generalized almost complex manifolds

LetM be areal manifold. Aeneralized almost complex structure on a real vector bundle
V — M has been defingd 2,14,15]in the following equivalent ways:

e A sub-bundleE C V¢ @ V¢ which is maximally isotropic with respect to the standard
pairing (e, ) and satisfief N E = 0;

e An automorphism7 of V @ V" which is orthogonal with respect {@, o) and satisfies
T =-1.

Example 2.1. LetV be areal vector bundle.

(a) LetJ be an almost complex structure 8nThen

o J 0
“\lo-—yv

is a generalized almost complex structureloif 7is a generalized complex structure
on V that can be written in this form, we say thais of complex type.
(b) Letw be an almost symplectic form dn(i.e., a non-degenerate sectiorof /\2 VVY).

Then
- 0 —ow?
“\w 0
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is a generalized complex structure & We say that such & is of symplectic
type.

There is also a way of describing generalized almost complex structuiemaarms of
line sub-bundles of\ V¥ ® C or spinors. This interpretation is very convenient for some
purposes.

Definition 2.2 (Gualtieri [12] and Hitchin [15]). Let J be a generalized almost complex
structure on a vector bundiéover M. Define thecanonical bundle to be the complex line
bundleL € A* VY ® C consist of the sectiong satisfyingt,¢ + « A ¢ for all sections

v + « of the+i eigenbundleE corresponding to the generalized almost complex structure
onV. Sections of. will be calledrepresentative spinors.

For the case of an almost symplectic manifold with two-fesnthis line bundle is gen-
erated by expfiw). For an almost complex manifold, one gets the usual canonical bundle.
Spinor bundles can also be understood intrinsically in terms of the sheaves of modules over
appropriate sheaf of Clifford algebras. The sections will satisfy certain restrictions over
each fiber. They are known as pure spif8r42,15] We have listed some of their features
and examined their restriction to sub-manifold$2h

Definition 2.3 (Hitchin [15]). In the special case that = Ty, has a generalized almost
complex structure, we call a generalized almost complex manifold.

In this case the spinor sections are differential forms. Such a manifold is always even
dimensional as a real manifold. This can be shown by constructing two almost complex
structures oM out of the generalized almost complex struc{d#s. This also follows from
the classification of generalized complex structures on a vector space which was done in
our previous papgg]. For the case of manifolds, a local structure theorem for generalized
complex manifolds has been proven by Gualtj&#].

Consider a real vector bundléand an automorphisy of V & VY, written in matrix
form as

T T2
J= (Js j4> ’

Let us record, for future use, the restrictions on theoming from the conditions that
preserves the pairin@, ) and satisfies’”? = —1. They are:

T2+ Tz = -1, (2.1)
J1J2 + J2Ja =0, (2.2)
J3J1+ JaT3 =0, (2.3)
Ta+ R = -1, (2.4)

Ja=—-J1, (2.5)
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Tz = =72, (2.6)
T3 =—Ta. (2.7)

2.2. B- and B-field transforms

Consider a real vector bundiéand a global sectioB of /\2 VY [12-15] Consider the
transformation oV @ VvV

10
exp(B) ;= <B 1) .

It is easy to see that exp] is an orthogonal automorphism &f@® V. Thus expB) - E is

a generalized almost complex structurelofor any generalized almost complex structure

EC (Ve VY)®C onV. We will call exp(B) - E the B-field transform of E defined by

B. We should note here that these type of transformations are sometimes called gauge-
transformations and were introduced with that name into real Dirac geof@étiry [25].

For an overview of these transformations in the Dirac geometry conteXBlse&milarly,

if B A%V, then

1
exp(p) = (0[;)

then expp) - E will be called thes-field transform of E defined by B. One can also write
these transformations in terms of the orthogonal automorphigais’ & VV. In this case,
the actions oB and g are given by 7 +— exp(B)J exp(—B) and J — exp(B)J exp(A),
respectively. We can also descri®ddield transforms in terms of local spinor representatives:
if a generalized almost complex structure on a real vector buvidéedefined by a pure
spinorg € \* V¢, andB € A? V" then theB-field transform of this structure corresponds
to the pure spinor exp{B) A ¢ [14,15] The g-field transform corresponds to the pure
SpPiNOriexp@E) ¢ [12,15]

2.3. Generalized almost Kdhler manifolds

We will need the notiorf12,15] of a generalized almostaler structure.

Definition 2.4 (Gualtieri [12]). A generalized almost &hler structure on a manifold is
specified by one of the equivalent sets of data.

(1) A pair (7, J) of commuting generalized almost complex structures whose product,
G = —JJ is positive definite with respect to the standard quadratic farne) on
Ty & TA\//['

(2) A quadruple ¢, b, J., J_) consisting of a Riemannian metrig two-form b, and
two almost complex structures,. and J_ such that the isomorphisms; = gJ; :
Ty — Ty andw_ = gJ_ : Ty — Ty; are anti-symmetric and hence correspond to
non-degenerate two-forms.
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The two sets of data are related explicitly as follows. Thd ) eigenbundle of is the

graph ofg + b : Tyy — T);. Denote this vector bundle by, and the {1) eigenbundle
(which is the graph ob — g) by C_. Then

Jy=mp,0J0 (jTTM|Ci)_1'

Conversely, giveng, b, J+, J_), one defines

J_} 10\ (Jp4+J- —(@t—wZh\ (1 O
2\ b1) \wy —o- —(JY + 1Y) -b1

j,_} 10\ (U —J —(@t4+0”Y)\ (1 O
2\ 1) \wy o —(JY =) b1/’

Using this same notation we have that
-1 -1
—g b
G = £0 8. (2.8)
g—bg b bg™
Example 2.5 (Gualtieri [12]). Notice that this definition naturally generalizes the linear
algebraic data of an#&hler manifold. We will refer to this as the ordinaraHler case. There
is an important family of examples which include the ordinadhlér as a special case.

They come from transforming both the complex and symplectic structures which occur in
the ordinary Kahler case by th8-field B.

and

J 0
I=\srvrp -1 (2.9)
and
, o 1B —w 1
J = w+ Bw B —Bol)’ (2.10)

wherewJ = —JYw. The ordinary Kahler case of course comes about from setBrig
zero.

3. T-duality
Our main goal is to extend the usug&duality transformation of geometric structures

on families of tori in a way that will allow us to incorporate generalized (almost) complex
structures.
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3.1. T-duality in all directions

In its simplest form,T-duality exchanges geometric data on a tofug (S1)*” with
geometric data on the dual tor@¥’. For instance if the torug is a complex manifold,
then the dual torus is also naturally a complex manifold. This immediately generalizes to
translation invariant (hence integrable) generalized complex structurBs on

Indeed, choose a realization Bfas a quotienT’ = V/ A of a realn-dimensional vector
spaceV by a sub-latticéZ” = A < V. Then specifying a translation invariant generalized
complex structure offf is equivalent to specifying a constant generalized complex structure
Je GL(V @ VY) on the vector spac. Now the dual torug™" has a natural realization
as the quotienf™ = vV /Hom(A, Z). Thus, in order to describe tigdual generalized
complex structure o™ it suffices to produce a constant generalized complex structure
on VY. This can be done in a simple way: let V & V¥ — VY @ V be the transposition
of the two summands. Using the natural identificatiorVdt with V, we can also view
as an isomorphism betweéh® VY andVY & VY. We will continue to denote by the
induced isomorphismiic @ V¥ — V& @ V&Y = V& @ V. With this notation one has the
following proposition.

Proposition 3.1 (Ben-Bassat and Boyarchenl@&}). The isomorphism t induces a bijection
between generalized complex structures on V and generalized complex structures on V.
If E corresponds to J € AUtr(V @ V), then t(E) corresponds to t o Jo L.

Remark 3.2. Below, we will see that the transformation of the spinor representatives is a
Fourier—Mukai type of transformation. The precise form of this transformation is given in

Eqg.(6.1). Notice that this proposition applies equally to generalized complex structures on
the vector spac¥ and to constant generalized complex structures (which are automatically
integrable) or thought of as a manifold. These in turn give generalized complex structures
on tori which are quotients of the vector space.

We also have the following remark froff].

Remark 3.3. Suppose thak is a generalized complex structure on a real vector space
and £’ is the B-field transform off defined byB € /\2 VV. Then, obviouslyz(E’) is the
B-field transform ofc(E), defined by the samB ¢ /\2 VY (but viewed now as a bi-vector
on VV). Thus, the operation interchanges- and g-field transforms.

The relationship from this last remark was exploitedifi] to produce an interesting
conjectural relationship to non-commutative geometry.

3.2. More general T-duality

It has been known for some time that the previous exampledhfality generalizes im-
mediately to a whole family df-duality transformations. This can be found for exanip8j
and the references therein. More recently Tang and Wein&eéjmapplied this observation
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to Dirac structures to investigate the group of Morita equivalences of real non-commutative
tori.

By analogy with the Tang—Weinstein construction we note that # ;" ; V; and
W = @7, W;, where each; equals eithelV; or V;", then the obvious isomorphism
fromV @ VY to W @ WV intertwines the canonical quadratic forms and hence it similarly
gives a bijection between generalized complex structure¥ with those onW. Notice
that these transformations are all real and so there is no problem with the transversality
condition. In general, one could also consider as duality transformations, isometras
Ve @ V¢ to We @ W such thatr o J o 1 is a generalized complex structure Bffor
all (or a family of) generalized complex structurgson V. A special case of this duality
can easily be seen to be the right starting point in generalizing the symplectic/complex
correspondence {23]. To see this, le be a real manifold with trivial tangent bundiéa
real torus with its normal group structure a¥ithe tangent space ¥at the identity, thought
of as a trivial bundle oM. Let X be the dual torus t&. ThenTy x = 7*(Ty ® V), and
Tyxix = 7*(Tu @ V), so for any isomorphismh : Ty, — V we have that

. 0 L
T (—L10> (3.1)

is a complex structure oW x X and

(o0 L
a* (—LV 0) (3.2)

is a symplectic structure off x X. Before pulling back, these structures, thought of as
generalized complex structures agixample 2..onV @ Ty, andVY & Ty, are related by
the obvious map

VoTyo V' eTy >V eTudVaeTy.

4. Mirror partners of generalized almost complex structures and associated Dirac
structures

In this section we consider a manifald equipped with a real vector bundiéwhere
the rank ofV equals the dimension @f. For any connectio¥ on V we show how to build
generalized almost complex structuresge= tot(V) in terms of data on the base manifold
M. We show that there is a bijective correspondence between generalized almost complex
structures built in this way ok and generalized almost complex structures of the same type
on X = tot(V") built usingVv".

Let X be the total space of any vector bundever a manifold. Then we have the
exact tangent sequence

O—)T[*V—j> TXET)JT*TM%O (41)
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A connection on the bundlI€ is by definition a map of sheaves
vivery

satisfyingV(fo) = o ® df + fV(o) for all local sectiong of C§; ando of V. We can use
any such connection to give a splitting of the above tangent sequence. Namely, let

TV gV > Ve Ty

be the pullback ofv and letS be the tautological global section ofV on X. ThenD =
(*V)(S) provides a map of vector bundledV <« Tx. Now its easy to see that this map
is a splitting of(4.1). Indeed, given a local framie;} of V over an open séf C M, define
smooth functions; on 7~1(U) by &i(ajej(m)) = a; for eachm in M. Together with the
functionsx; o 7, for {x;} coordinates o/ C M, these form a coordinate systeman(U)

in which we havej(e;) = 8/dxi;. In these coordinates we have thatont(U),

S = ‘E,‘T[ile,'

and so if we defin® by
D=@*"V)S)=nte;@ds + & te; @ F A, (4.2)

whereVe; = ¢; ® Aj; then sincer* A ;; annihilates the image gfve have that

D(j(rer)) = (mte)(dgi j(mren)) = 7 e
and soD o j is the identity. We will write this splitting oX as

J dm
0——71"V —=Tx—n"Ty—=0,
D «

Consider the isomorphism

D O

dr O
F:Tx® Ty - a*Ver Ty ®a*VY &n*Ty, F = o | (4.3)
J
0 o
with inverse

FlLin'ver'Ty eV @n'Ty, — Tx & Ty,

pi_(J o« 0 0 (4.4)
~\o 0 DY @n)V )’ '
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These maps intertwine the obvious quadratic forms and therefgfésifi generalized al-
most complex structure ov & Ty, thenJ = F~(z* J)F is a generalized almost complex
structure orX.

Definition 4.1. If V is any connection ofY then we define & -lifted generalized almost
complex structure t0 be a generalized almost complex structureXos tot(V) which can
be expressed a§= F~(7*J)F whereJis a generalized almost complex structureXon
andF depends ofV as explained above.

Now using the dual connection”, we may split the sequence tangent sequenceasf

0" VY e T =2 4 T —0),

D &

Of course we will also need the maps

0
2 \ *y 7V Ak A% Ak gV T dzr 0
FiTx@Tx » a'VI@T Ty @V Ty, F=| o (4.5)
J
0 &V
with inverse

FlLmvVWerTyer'Ver Ty — TxoTy,

B ja 0o o 4.6)
~\oo0DY @r)V )’ '

Now if we take any
JeGLVOTy® V' &Ty)

we can apply the duality transformation along the fibers to get
JeGLV' & Ty ®V & Ty).

Clearly this transformation intertwines the quadratic forms andisa generalized almost
complex structure ol @ Ty, if and only ifjis a generalized almost complex structure
on VY @ Ty. Therefore7 = F~1(z*J)F is a generalized almost complex structurexon
ifand only 7 = F~1(#*7)F is a generalized almost complex structureXarAt this point
we will impose an extra constraint on these structures.

Definition 4.2. A V-lifted generalized almost complex structufe= F~(*7)F will be
calledadapted if

JVaVY)=Ty®T)y.
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We will assume tha7is an adaptedy-lifted generalized almost complex structure from
now on.

Remark 4.3. Itis clear from the construction above thé@is adapted if and only if7is.

Finally, let us record the explicit formulas for the operatgrﬁ, JandJ. The adapted
condition together with the fact thg? = —1andthat/preserves the quadratic form ensure
that it is of the form

0 Jiz 0 U

Jiz 0 -J5 O

J= , JEGL(VaTy® V' @®Ty) 4.7)
0 Js1 0 —Ji3
~J5 0 —J; 0
subject to

J12013 — J22J31 = —1, (4.8)
J12032 + J22J12 = 0, (4.9)
J13T12 — TzoJ31 = —1, (4.10)
J13J22 + T32J13 =0, (4.11)
J31J13 + J{3J31 = 0, (4.12)
T51J12 + J{»T31 = 0. (4.13)

With this notation we have
0 Ja1 0 —Ji,

. ~J5» 0 1z O .
J= , JeEGLV' ®&Tu®VaTy) (4.14)
0 J2 0 U2
~Ji, 0 =J5 0O
and so
7 ( Jj(r* J12)(dn) + a(* J13) D J(T* T22)a” — al* T35) 7 )
- DY (* J31)(dn) — (dm)(n*T3)D  —DY (n* Tzl — (dn)" (7w* T{5)j"
(4.15)
and
. IETe)(d) - &7 T D —jE* T + &7 J13)]
DY(R* J)(0R) — (@R)" (DD DY(F*T2)a” — (dR)Y (R T3] )

(4.16)
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Remark 4.4. Notice that the mirror symmetry transformation “exchanggs; with 731
andJ22 with — 7.

We have written down the bijective correspondence betwedfied, adapted, general-
ized almost complex structures anand VV-lifted, adapted, generalized almost complex
structures orX. We will show below, in the case thatis flat, that7 is integrable if and
only if Jis.

4.1. Associated almost Dirac structures

For each of the generalized complex structureX dnat we consider, there is a natural
almost Dirac structure that appears on the base manitbltt does not depend on the
connection used to split the tangent sequenc& e M. An almost Dirac structure on
M is just[9] a maximally isotropic sub-bundle dfy; & T,;. Now the isomorphismy7,
given in Eq.(4.7), preserves the quadratic form and when restricted & V", gives an
isomorphismV & VY — Ty @ T); which preserves the obvious quadratic forms. Hence
the image oV is a maximally isotropic subspace®; & T);. In other words it is an almost
Dirac structure o/ which we will call A, where

A = JV) = Jis(V) = T1(V) = AV).

Example 4.5.

(1) Suppose we use our method to construct an almost complex structire-gat(V) out
of some arbitrary connection 81 Then we necessarily have thiats is anisomorphism
and 31 = 0. HenceA = Ty,.

(2) Ifinstead we put an almost symplectic structureXoe: tot(V) thenA = T);.

Notice that the almost Dirac structure
A=JVY) = =ToVY) = To(VY) = TVY)

arising from the mirror generalized almost complex structure is always transverse to
Hence we always get a pair

ABA=Ty®T)y

of complementary almost Dirac structures. Later we will return to these structures and study
their integrability and the existence of flat connections on them.

4.2. Mirror symmetry for generalized almost Kdhler manifolds
Inthis section, we study the case of a paivefifted, adapted generalized almost complex

structures on the total space of a vector bundle which form a generalized alfiolst K
structure as described in Secti@rB. Under these conditions, we write down the mirror
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transformation rule that allows us to relate the generalized almaktek metricG on X
and the mirror generalized almostKler metricG on X. We observe that in general, the
local transformation rules for the paijg, () that exist in the physics literature, continue to
hold in this setting, even though here neitigenor 7' needs to be &-field transform of a
generalized complex structure of complex type.

First of all notice that the mirror transform of a generalized almdagilkr pair (7, 7') is
also generalized almosti#ler. Indeed, ifwe leff = F~1(x* J)F andJ’ = F~(=*J')F,
then.7and.7’ commute if and only if7and. 7’ commute. This, in turn, is equivalent £
and.7’ commuting which happens if and onlyjf= F-Y#* NF andJ’ = F-Y(7*J)F
commute. Similarly,G = —F L (JJF is positive definite if and only if— 77" is.
This is equwalent to—jj being positive definite, which happens if and onlyGif=
—F- n*(ﬂ )F is positive definite. By our assumptions gfand.7’ we may writeG =
-JJ as

G VOTydV' ®&Ty > VaTyd V' &Ty,

Gi1 0 Ga1 O
0 Gia 0 Gog
G 0 G{; 0 |’
0 G3z O G\l/4

G=-J7 =

(4.17)

whereG21 = Gy, Goa = Gy, G31 = G3, Gaa = G3,. Finally, using the fact that this
matrix squares to the identity, we get:

Gu=—T12J12+ J22T51 s Gar= J12T5" + J22T11 s
Gu=—T13T11" + T3J51 Goa= T30~ I20 12
Ga1= —InT1p— JiaT51 - Gas =TT 11+ T2 T 51

ThereforeG’ = —ﬂ’ comes out to be
G;./l 0 G31 0
”n 0 Gis 0 G

G =-J7 = . . (4.18)

- — Go1 0 Gu1 O
0 G34 O G\l/4

Remark 4.6. Notice that the mirror symmetry transformation “exchang@si with G7;,
G21 with G31, and “preservestG 14 andGaa.

Now writing G in terms ofg andb [12]:
_ —lb -1
G— 8 . 8 . (4.19)
§—bg b bg”

and similarly writingG in terms ofg‘andi we can easily manipulate the resulting equations
to yield the following formulas for the metrics amifields in terms of the vector bundle
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mapsG;; on the base manifold.
g = DG, D + (dn)"7* G4 dr,
b = DY7*(GY1G51)D + (dn)V ¥ (GY4G 54 dr,
§ = DYA*G3iD + (d7)V7* G54 d,
b = DY#*(G11G31)D + (d7)" 7*(GYaGoa) di.

Notice that our assumptions on the compatibility of the generalized complex structures, and
the foliation and transverse vector bundle, imply that the metacdB-field b do not mix
the horizontal and vertical directions.
Now if we chose local vertical coordinates adapted to the flat connegtfoon X and
5% on X andx’ on the base then the above just means that locally we have

g = gij(x) dx’ A/ + hag(x) dy® dy?, b = b;j(x) dx’ dx/ + Bgg(x) dy* dy”,
8 = gij(x) dx’ dx/ 4 hgp(x) d* d3P, b = byj(x)dx’ dx/ + Bgg(x) d5* d3*,

where of coursey’ meansy’ o 7 onX andx’ o 7 on X.
Then the Buscher transformation ru[&s6] (we used10] as a reference)

(h+ Bh(h—B)=h and @+ B)B(h — B)=—B
are verified from the easily checked identities
(Gai + G11G21)G31(Gaf — G11Ga) = Gaof
and
(Ga1 + G11G,7)G11Ga1 Y(G,i — G11G,1) = —G{1Gar ™™

respectively.
We now work out the transformation rules relating the two almost complex structures,
J4, J—, and their mirror partnerg, andJ_. We have

Jy =T+ Te(g+b) and J_ =T+ Jo(b - g).
By combining the results above we can easily compute that

Ty = j(m* (T2 + Jo2(GYg + 1)G34)) dr + a(*(Ja3 — T3o(G11 + 1)G 1)) D
and

I = j0*(J12 + ToaGYs — 1)G33)) 0 + a(*(T1z — T3o(G Y1 — 1)Go1)) D.
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Hence
T4 = j(7* (Js1 — Ha(Gia+ 1)G3)) dit + &(7*(—Typ + J13(G11 + 1)G 1)) D
and

J_ = j(7*(Js1 — Ta(GYs — 1)G33)) dit + &(7*(—T3p + J13(G11 — 1)G31)D.

5. Branes

In this section, we give some ideas of how one can transfer bifd2e%7] from a
generalized almost complex manifold to its mirror partner. We will present in detail only
a very restricted case. This construction closely parallels th§20r22] Consider the
following definition from[17] which also appears in a more general fornlif].

Definition 5.1 (Kapustin [17]). Let (X, J) be a generalized (almost) complex manifold.
Consider triples

(Y, L, Vyg),

where f : Y — X is a sub-manifold ok, £ is a Hermitian line bundle oii, andV, is a
connection orC. Such a triple is said to begneralized complex brane if the bundle

{(v,a) e Ty ® (T IV)If* o (Af) @ = 1, F)
is preserved by the restriction gfto Y, whereF is the curvature two-form o¥ .

We studied some special ca§#2] of these branes if2] under the name of generalized
Lagrangian sub-manifolds and found some interesting relationships to sub-manifolds of
X which inherit generalized complex structures (which we call generalized complex sub-
manifolds).

Suppose tha¥/ is anrn-manifold, V is a rankn vector bundle ord, V is a connection
onV, X is the total space of, X is the total space of" and.7 is an adaptedy-lifted
(see Sectiod) generalized almost complex structure¥riet S be a sub-manifold o/,

W C V|s a sub-bundley the total space of¥, andY the total space of the sub-bundle
Ann(W) C VV|s. Then we propose that the relationship betwemdY is a special case
of a potential generalization of the relationship betwgerycles andB-cycles in mirror
symmetry (see e.§20] and references therein). We justify this with the following lemma.

Lemma 5.2. Under the conditions of the preceding paragraph, the triple (Y, C ® Cy°, d)
is a generalized complex brane of (X, J) if and only if the triple (Y,C® C2°,d) is a

generalized complex brane of (X, J ).
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Proof. In this proof, we will be using the notation of SectidnWe need to show that

JTy ® Ann(Ty)) = Ty ® Ann(Ty) (5.1
if and only if
J(Ty & Ann(T})) = Ty & Ann(Ty), (5.2)

where it is to be understood that we are restricting Y and 7 to ¥. Observe that when
understood as bundles dhwe have

Ty = j(@*W) ® a(7*Ts),
Ann(Ty) = D (7*(Ann(W))) & (dx)" (=" (Ann(T5s)))

and when understood as bundlesigwe have
Ty = j@*(Ann(W))) & &(7*Ts), Ann(Ty) = DY (7*(W)) @ (dr)" (7* (Ann(T))).

From this perspective it is clear that bdthl) and (5.2pare both equivalent simply to the
conditions (understanding thatis restricted tcf)

J13(W) € Ts, (5.3)
J12(Ts) S W, (5.4)
J22(Ann(Ts)) € W, (5.5)
J31(Ts) < Ann(W), (5.6)

and therefore we are done. A more general treatment will involve repld€img an affine
sub-bundle which will result in a non-trivial line bundle on the mirror side. A more general
story will be the result of upcoming work. The extension of the results in this section to the
case of torus bundles is clear from the development in Se8tidriPart Il of this papefl].

We hope that in a suitable extended version of the homological mirror symmetry conjecture
[19], generalized complex manifolds would be assigned categories in a natural way, and
branes would be related to objects in these categoried.]

Remark 5.3. On a torus bundleZz — M, whereZ is an orientable compact manifold,

it is plausible that the correspondence which we are describing here, when thought of
as a correspondence between homology classes tonhomology classes on the dual
torus bundleZ — M agrees, upon using Poinéabuality, with the correspondence in
cohomology given in Sectiod of Part 1l of this papef1].

6. The mirror transformation on spinors and the Fourier transform

In this section we study a map from certain complex valued differential forms on the
total space of a vector bundle to complex valued differential forms on the total space of the
dual vector bundle. We show that the line sub-bundle of the bundle of differential forms
associated to an adapted;lifted generalized almost complex structure has a sub-sheaf
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which goes under this correspondence to the sub-sheaf associated to the mirror generalized
almost complex structure. The idea of using a Fourier transform in the cont&dudlity

for generalized complex structures has appeared in a slightly different context ifLBpth

(based on ideas appearing[#1]) and alsd10,26]and the references therein.
Consider a vector bundhé of rankn on a manifoldM. There is an isomorphism

AvVec— (/\V@/\VV> ®C
given by
s> [0 e (6.1)

wherex is the canonical global section o (® V¥) ® C € A%(V @ V) ® C and

/:/\(V@vV)®@—>/\V®/\VV®C

is the projection map. Furthermore, this map decomposes into isomorphisms

n—p

p n
Aviec— Ave Av'ec,

and also induces a Fourier transform isomorphism, which we willdll

/\VV®/\TA\2®CEJ>'/\V®ATA\2®;\VV®C

which in turn decompose into isomorphisms

(/q\T,y,ea/p\vV@C) — (/CI\T,‘;®”/_<V®/H\VV®<C>.

Lemma 6.1. Let V be a rank n orientable vector bundle on an n-manifold, J a generalized
almost complex structure on the vector bundle V & Ty satisfying J(V @ V) = Ty & Tyy,
and j the mirror structure. Then the composition of the map F.'T. with any trivialization of
N VY takes the line bundle L C \(V @ Ty)Y ® C which represents J to the line bundle
L € \(V & Ty)” ® C which representg.

Proof. First of all notice that changing the trivialization pf' vV multiplies the image of
F.T. by a non-zero function on the base manifold. This is an automorphism of image of the
composed map along with its inclusion i®{V @ Ty)¥ ® C. The (i) eigenbundle of/
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is the graph of the map
—idlvevec : (VO VY)®C — (Tu @ Ty) ® C.
Similarly, the i) eigenbundle oﬁis the graph of
—idlvvevec : (VO V)QC — (Ty & Ty) @ C.

The sectiong of L therefore satisfy

i + i(T310) [\ ¢ =0, (6.2)
Ligya® + (@+iTle) \¢ =0 (6.3)

for all sectionsy of Vanda of VV.
We need to show that the sectiBrT.(¢) of A(VY & Tu)" ® \" VY ® C satisfies

i B T($) + (v + iT5) \F.T.(¢) =0, (6.4)
tatigyyaFT-(9) + (1.7Y20) \ F.T.(¢) = 0 (6.5)

for all sectionsy of V anda of VY. These equations hold for the mEgI. if and only if

they hold for the composition d.T. with any trivialization. This can be seen by writing
F.T. as the composed map followed by the action of “wedging” with a global section of
A" VY. Egs.(6.4) and (6.5will follow immediately from taking the Fourier transform of
both sides 0{6.2) and (6.3pnd using the following lemma. O

Lemma 6.2. For any sections £ of N(V® Ty)" @ C,vof VR C, w of Ty ® C, o of
VY ® Cand B of Ty; @ C we have

() F.T.(00) = v ART.0);
(i) F.T.(tw¢) = twF.T.();

(i) F.T.(@ Q) = wF.T.(0);
(v) ET.(8\) = BAET.().

Proof. It clearly suffices to prove this in the case tljais a section of A?(V @& Ty)".
Notice also thaf o, = 0 and:,x = —v for any sectior of V.andi,x = « for any section
a of VY. Then we have

P10 = [ Aexp) = [ ue Aexp) - (-1 [ ¢\, expl)
=1 [ e \w exp) = ~-1 [ ¢ At /\ exp)
=17 [e Ao\ = [v/\c \expi)
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=v/\ / ¢ \ expl) = v /\ F.T.(2),
P10 = [0 \expl) = [ 1ale A\ expo)

=t [€€ \exp@) = F1.0),

FLEA = [@/\eAewi) =17 [ \a et
=1 [ € \o 00D = 10 [\ &XpU) = WFT(0),

FTEAO= [sAcNew =g/ [c\ew =pAFT©O ©

Let M ann-manifold andX —7" M be the total space of an orientable vector buntim
M, with connectiorvV and.7a V-lifted, adapted generalized almost complex structurg.on
Let X —7 M be the total space af". UsingV we may realizer*(\ V" ® A\ Ty ®C)asa
sub-bundle of\ Ty ® C. Now 7 determines a spinorial line bundlec A Ty ® C which
is simply the image under this isomorphism of the pullbatk. Similarly, Jdetermines a
spinorial line bundld. < A Tg ® Cisomorphic tor* L. Therefore, interpreting the Fourier
transform maps as isomorphismgr 1L — 7.7 1L we can map certain sections bf
over open sets of the form 1(U) to sections of. over open sets of the fortn1(U). We
have shown the following lemma.

Lemma 6.3. Let V is an orientable rank n vector bundle on an n-manifold M and J an
adapted, V-lifted generalized almost complex structure on X = tot(V) with associated line
bundle L. Let the mirror generalized almost complex structure have associated line bundle
L. Then their are sub-sheaves, n’lg C L and f‘[’lL - L such that if we compose the
isomorphism

mem (/\ Ty ® \VY ®<C> aat (/\Tﬁvl dN\Vve /n\ vV ®<C>
with any trivialization of \" V", the resulting isomorphism
T, (/\T}@C) D et (/\T&@/\VW@C)
~> it (Ao \vec) ca (AT} eC)

restricts to an isomorphism

7.l D e 'L — 7. L C AL L.
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This is useful because, from thelifted property, its easy to see that= L ® cY
andL =771L ® C?. Therefore forU small enough, representative spinors fbover

7~}(U) and 7 over 7~ 1(U) exist and can be chosen as pullbacks of sections afid L
overU. They are exchanged under the Fourier transform even though we have not written
down a map between the push-forwardé ahdL . The situation will be much more simple

in the case of torus bundles.

Remark 6.4. Itis important to remember that the geometry&i not just captured by the
abstract line bundlé up to isomorphism, but rather, liytogether with its embedding into
the differential forms.

Understanding mirror symmetry in terms of a relationship between pure spinors was
approached with similar techniques[it0].

7. Transverse foliations and generalized Kéhler geometry

In this section we study in the abstract some of essential geometric details of our con-
struction without reference to the specific context (e.g. the type of bundle).

Definition 7.1. Suppose thaX is a foliated manifold and lIeP € Tx be the involute sub-
bundle tangent to the leaves of the foliation. We say that a generalized complex stgficture
andP arecompatible if there exists a complementary sub-bunde- Tx so that

Jipeann(@) - P ® Ann(Q) — Q @ Ann(P)

is an isomorphism of vector bundles. Under this condition, we will @zl 7-compliment
to P. For @ a J-compliment toP we will often tacitly identify P with AnnQ, and Q"
with AnnP.

Notice that the {i) eigenbundleE of Jis in this case necessarily transverse to both
Pc @& Ann(Q)c andQc & Ann(P)c. HenceE is the graph of a map frofAc & Ann(Q)c to
Qc ® Ann(P)c. In fact, it is easy to see that we hakie= graph{i.7) where we consider
(—iJ) as a map fronPc & Ann(Q)c to Oc ® Ann(P)c.

Example 7.2.

(i) Suppose thaX is a manifold equipped with an involute distributi®nc Tx of half the
dimension ofX. Let,7be the generalized almost complex structur&@orresponding
to a non-degenerate real two-foun ThenP and 7 are compatible if and only iP
defines a Lagrangian foliation on Indeed, the compatibility shows thatdefines
an isomorphism fron® to AnnP, which shows thaP is Lagrangian. Conversely, if
P is Lagrangian, then by (sd&]) choosing an almost complex structufeso that
the isomorphism-wJ : Ty — Ty represents a Riemannian metricXnt is easy to
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see that the vector bundlgP is a J-compliment toP, and so/P is also Lagrangian.
This example signifies some relationship of the content of this paper with the area of
integrable systems.

(i) On the other hand i is a manifold equipped with an involute distributi#hC Ty
of half the dimension oK and 7 is the generalized almost complex structureXon
corresponding to an almost complex structéithen? and 7 are compatible if and
only if JPN P = (0). In other words the leaves of the foliation are totally real sub-
manifolds[4]. In this case thg/-compliment taP is fixed uniquely agP.

(iif) One of the main classes of examples in Part Il of this paper is wkiéseann-torus
bundle with section over armanifold, 7is a semi-flat generalized complex structure,
P is the vertical foliation tangent to the torus fibers, adds the horizontal foliation
given by the splitting of the tangent sequence given by the connection as will be
explained in Sectio of Part II.

Remark 7.3. In the above and in much of what follows, the fact tfRais involute is
irrelevant. That is to say, it could just be a sub-bundle of the tangent bundle. However, it
will be taken to be involute for the applications that we have in mind, for instance ®hen
represents the tangent directions to a torus fibration, as will be discussed in[Rhart Il

Definition 7.4. Suppose that/ and J’ constitute a generalized almostiKler pair of
generalized almost complex structures &hd Tx is a sub-bundle of the tangent bundle
of half the dimension. Then we say tifais compatible with the pairf, J') when, using
the notation introduced in Secti@l

J2(Ann(P)) < P, (7.1)
J3(P) < Ann(P), (7.2)
J5(Ann(P)) € P, (7.3)
J3(P), € Ann(P), (7.4)
J1T(P) € P, (7.5)
J1J1(P) € P, (7.6)
JaJ s(Ann(P)) < Ann(P), (7.7)
T 4Ja(Ann(P)) < Ann(P). (7.8)

Notice that if there is a sub-bundi@ which is both aJ-compliment and an7’-
compliment toP thenP is compatible with 7, 7'). The converse will be shown below. In
the ordinary Kahler cas&.4 the condition thaf is compatible with (7, 7’) simply says
thatP is Lagrangian with respect to the symplectic structure. InBtiansformed almost
Kahler case where we have an almostler pair (, w) the conditions are as follow$?
must be Lagrangian with respect to the symplectic strueiuaad alsoB(w~1BP, P) = 0
andB(JP,P) = 0.
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Theorem 7.5. If X is a 2n-dimensional real manifold then a rank n bundle P C Ty is
compatible with a generalized almost Kéhler pair (7, J') if and only if there is a sub-
bundle Q C Tx which is both a J-compliment and a [J'-compliment to P. These properties
specify Q uniquely.

Proof. If such aQ exists then it is clear thg? and Q are both compatible with the pair
(7, J). Furthermore, the property th&is a J-compliment and & -compliment taP for

a generalized Khler pair (7, J') fixes Q uniquely. Indeed, if we are in this situation and
G = — 77 is the generalized &hler metric then we have that

g§—bg b =Gz =-T8T1 — TyJs.

Therefore the isomorphisng ( bg~1b) takesP to Ann(Q) and soQ must be the perpen-
dicular to complement oP with respect to the metrigg(— bg~1b). We will now realizeQ
explicitly as the image of a different automorphigin. € GL(Tx) of the tangent bundle
with itself which becomes an almost complex structure in the when0. Therefore the
proof will be completed via the following lemma. O

Lemma 7.6. If (J, J') is a generalized almost Kiihler pair then the map
K+ = J+(1— g_lb) = jl + jé]_

is an isomorphism of the tangent bundle with itself. If P is compatible with the pair (J, J')
then K takes P to a sub-bundle Q, transversal to P, and we have that

Jpaann(@) | P@® Ann(Q) — Q & Ann(P)

and
Jipeann() - P ® Ann(Q) — Q & Ann(P)
are isomorphisms of vector bundles. In other words, Q is both a J-compliment and a

J'-compliment to P.

Proof. First of all, notice thatk; is an isomorphism of the vector bundlg with it-
self. Indeed, the vector bundle map + bg~1b) from Ty to Ty corresponds to the
metric g(v, w) + g~ 1(bv, bw) which is positive definite and hence if we consigeto
(g — bg~1b)~1, we see that

Ki(—(g+D)fl4)=1
Now we have

G3J1 = — (3T + JaT3) T — JaT1J1 — JaT 3T1
= —FI1J1 — IT3T1 + TaT 5 — T4 T3)
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= —BI1J — JasT1 — (Ja)? T3+ JaT 4T3

= —RI1JL — TaT3T1 — (=1 — J3J2) T3 + JaT 4T3
= —J3J1J1 — JaT3T1 + T3+ T3JoT 5+ JaT 4T3
= —RI1TL+ BILT + T3+ J3ToT 3+ TaT 4T3

By inspection of the definition of compatibility & with the pair (7, 7') we have that all
of these terms ser@ into Ann(P). ThusG3J1(P) € Ann(P). Since the roles off and J’
are interchangeable we have,

G3J) = =T33 T+ T3T1J1+ T3+ T3T2T3 + T4 JaT 3

as well. HenceG377(P) < Ann(P). Therefore the image dP under the isomorphism
K+ = J1+ J1 is the perpendicular sub-bundle7owith respect to the metriGs.

Now, in order to show the remaining claims, it suffices to defihas K (P) and
show that71(Q) € P and J4(Ann(P)) € Ann(Q). Indeed suppose that we have shown
this. Note that reversing the roles gfand .7’ does not chang® and so we get that
J1(Q) € P and J,(Ann(P)) < Ann(Q), and therefore7(Q & Ann(P)) € P & Ann(Q)
andJ'(Q @ Ann(P)) € P & Ann(Q), which is enough sincg and 7’ are isomorphisms.

Letv be an element of a fiber @. We may express it asfg + J4)w for a unique fiber
w of P over the same point. Then

Jw = J1°w + NTjw = —w — Do Jaw + A Tjw

which is an element of the fiber @ over the same point.

Let u be an element of a fiber of AnR}. Then, ifv is in the fiber ofQ over the same
point, we have that{su)v = —u(J1v) which is zero by the previous paragraph. Therefore
Jaw is in the fiber of AnnQ) over the same point. [

The reader may wonder about the possibility of instead taking
K. =J-Jy=J(1+g')

Lemma 7.7. K_ is an isomorphism of the tangent bundle with itself. In general it is not
equal to K. However, if P is compatible with the generalized almost Kéhler pair (7, J'),
we have that K. (P) = K_(P). In fact we have that they are both equal to the orthogonal
complement of P with respect to the metric Gz = g — bg~b.

Proof. To seethak _ is anisomorphism, simply note thatf (g — b)J_ K_ = 1 wherefis
the inverse t@ — bg~1b. DefineQ, = K, (P) andQ_ = K_(P). By the above arguments
itis clear thatk_ = J1 — J is an isomorphism frorfP to the orthogonal complement of
P with respect to the metri6s = g — bg~1b. Therefore we hav& | (P) = K_(P). O

Remark 7.8. As an aside, we mention that for any generalized almost complex structure,
Jthere is another ong”’ such that (7, ') are a generalized almos&Kler structure.
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Since we will not be using this and since the proof precisely mimics the proof that every
almost symplectic manifold has a compatible almost complex structure we do not include
the proof here.

The next requirement that one should want to place®if(, P) is that the distribution
Q be involute. We plan to return to this analysis in a future paper. This is the analogue of
considering a flat connection in definition of the tesemi-flat in Section 2 of Part I[1].
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